Calculate the phasor currents I_1 and I_2 in the circuit

Solution:

For loop 1, KVL gives

$$-12 + (-j4 + j5)\mathbf{I}_1 - j3\mathbf{I}_2 = 0$$

or

$$j\mathbf{I}_1 - j3\mathbf{I}_2 = 12$$
 (13.1.1)

For loop 2, KVL gives

$$-j3\mathbf{I}_1 + (12 + j6)\mathbf{I}_2 = 0$$

or

$$\mathbf{I}_1 = \frac{(12+j6)\mathbf{I}_2}{j3} = (2-j4)\mathbf{I}_2$$
 (13.1.2)

Substituting this in Eq. (13.1.1), we get

$$(j2 + 4 - j3)\mathbf{I}_2 = (4 - j)\mathbf{I}_2 = 12$$

or

$$I_2 = \frac{12}{4 - j} = 2.91 / 14.04^{\circ} A$$
 (13.1.3)

From Eqs. (13.1.2) and (13.1.3),

$$\mathbf{I}_1 = (2 - j4)\mathbf{I}_2 = (4.472 / -63.43^{\circ})(2.91 / 14.04^{\circ})$$

= $13.01 / -49.39^{\circ}$ A