

© Qorvo Inc 2024 Version 4.9 Page 1 of 193

DW3720 DEVICE DRIVER API GUIDE

© 2025 Qorvo US, Inc. – All Rights Reserved

DW3xxx/QM33xxx

DEVICE DRIVER

APPLICATION

PROGRAMMING

INTERFACE (API) GUIDE

USING API FUNCTIONS TO

CONFIGURE AND PROGRAM THE

DW3xxx, QM33xxx UWB

TRANSCEIVER PARTS

This document is subject to change without notice

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

DOCUMENT INFORMATION

Disclaimer

Decawave reserves the right to change product specifications without notice. As far as possible changes to

functionality and specifications will be issued in product specific errata sheets or in new versions of this

document. Customers are advised to check the Decawave website for the most recent updates on this

product

Copyright © 2020 Decawave Ltd

LIFE SUPPORT POLICY

Decawave products are not authorized for use in safety-critical applications (such as life support) where a

failure of the Decawave product would reasonably be expected to cause severe personal injury or death.

Decawave customers using or selling Decawave products in such a manner do so entirely at their own risk

and agree to fully indemnify Decawave and its representatives against any damages arising out of the use of

Decawave products in such safety-critical applications.

Caution! ESD sensitive device.

Precaution should be used when handling the device in order to prevent permanent damage

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

DISCLAIMER

This Disclaimer applies to the DW3xxx API source code (collectively “Decawave Software”) provided

by Decawave Ltd. (“Decawave”).

Downloading, accepting delivery of or using the Decawave Software indicates your agreement to the

terms of this Disclaimer. If you do not agree with the terms of this Disclaimer do not download,

accept delivery of or use the Decawave Software.

Decawave Software is solely intended to assist you in developing systems that incorporate

Decawave semiconductor products. You understand and agree that you remain responsible for using

your independent analysis, evaluation and judgment in designing your systems and products. THE

DECISION TO USE DECAWAVE SOFTWARE IN WHOLE OR IN PART IN YOUR SYSTEMS AND PRODUCTS

RESTS ENTIRELY WITH YOU.

DECAWAVE SOFTWARE IS PROVIDED "AS IS". DECAWAVE MAKES NO WARRANTIES OR

REPRESENTATIONS WITH REGARD TO THE DECAWAVE SOFTWARE OR USE OF THE DECAWAVE

SOFTWARE, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS.

DECAWAVE DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF ANY THIRD

PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO DECAWAVE SOFTWARE OR THE USE

THEREOF.

DECAWAVE SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY

THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON THE DECAWAVE SOFTWARE

OR THE USE OF THE DECAWAVE SOFTWARE WITH DECAWAVE SEMICONDUCTOR TECHNOLOGY. IN

NO EVENT SHALL DECAWAVE BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL

OR INDIRECT DAMAGES, HOWEVER CAUSED, INCLUDING WITHOUT LIMITATION TO THE GENERALITY

OF THE FOREGOING, LOSS OF ANTICIPATED PROFITS, GOODWILL, REPUTATION, BUSINESS RECEIPTS

OR CONTRACTS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION), LOSSES OR EXPENSES RESULTING FROM THIRD

PARTY CLAIMS. THESE LIMITATIONS WILL APPLY REGARDLESS OF THE FORM OF ACTION, WHETHER

UNDER STATUTE, IN CONTRACT OR TORT INCLUDING NEGLIGENCE OR ANY OTHER FORM OF ACTION

AND WHETHER OR NOT DECAWAVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES,

ARISING IN ANY WAY OUT OF DECAWAVE SOFTWARE OR THE USE OF DECAWAVE SOFTWARE.

You are authorized to use Decawave Software in your end products and to modify the Decawave

Software in the development of your end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR

IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER DECAWAVE INTELLECTUAL PROPERTY RIGHT,

AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS

GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other

intellectual property right relating to any combination, machine, or process in which Decawave

semiconductor products or Decawave Software are used.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

You acknowledge and agree that you are solely responsible for compliance with all legal, regulatory

and safety-related requirements concerning your products, and any use of Decawave Software in

your applications, notwithstanding any applications-related information or support that may be

provided by Decawave.

Decawave reserves the right to make corrections, enhancements, improvements and other changes

to its software at any time.

Mailing address: -

Decawave Ltd.,

Adelaide Chambers,

Peter Street,

Dublin D08 T6YA

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

1 INTRODUCTION AND OVERVIEW ... 13

2 GENERAL FRAMEWORK ... 14

2.1 COMPATIBILITY LAYER ... 15

3 TYPICAL SYSTEM START-UP ... 17

4 INTERRUPT HANDLING .. 18

5 API FUNCTION DESCRIPTIONS ... 19

5.1 INITIALISE APIS .. 19
5.1.1 dwt_probe .. 19
5.1.2 dwt_update_dw ... 21
5.1.3 dwt_apiversion ... 21
5.1.4 dwt_version_string ... 22
5.1.5 dwt_readdevid .. 22
5.1.6 dwt_check_dev_id .. 23
5.1.7 dwt_getpartid ... 23
5.1.8 dwt_getlotid ... 24
5.1.9 dwt_geticrefvolt ... 24
5.1.10 dwt_geticreftemp ... 25
5.1.11 dwt_getxtaltrim .. 25
5.1.12 dwt_setlocaldataptr ... 26
5.1.13 dwt_otprevision .. 26
5.1.14 dwt_softreset ... 27
5.1.15 dwt_checkidlerc .. 28
5.1.16 dwt_initialise .. 28
5.1.17 dwt_settemperature .. 30
5.1.18 dwt_getpllcalibrationtemperature ... Error! Bookmark not defined.
5.1.19 dwt_getwslotid ... 30

5.2 CONFIGURE APIS ... 31
5.2.1 dwt_configure .. 31
5.2.2 dwt_restoreconfig .. 38
5.2.3 dwt_restore_common .. 39
5.2.4 dwt_restore_txrx .. 39
5.2.5 dwt_setplenfine .. 40
5.2.6 dwt_setpllrxprebufen ... 41
5.2.7 dwt_configuretxrf ... 41
5.2.8 dwt_adjust_tx_power .. 43
5.2.9 dwt_calculate_linear_tx_power ... 44
5.2.10 dwt_setpllbiastrim .. 46
5.2.11 dwt_setrxantennadelay .. 46
5.2.12 dwt_getrxantennadelay ... 47
5.2.13 dwt_settxantennadelay .. 47
5.2.14 dwt_gettxantennadelay ... 48
5.2.15 dwt_setpdoaoffset ... 48
5.2.16 dwt_readpdoaoffset ... 49
5.2.17 dwt_configurestskey .. 49
5.2.18 dwt_configurestsiv ... 50

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.2.19 dwt_configurestsloadiv .. 50
5.2.20 dwt_configurestsmode ... 51
5.2.21 dwt_configuresfdtype ... 51
5.2.22 dwt_setleds .. 52
5.2.23 dwt_setlnapamode ... 53
5.2.24 dwt_generatecrc8 .. 53
5.2.25 dwt_enablespicrccheck ... 54
5.2.26 dwt_configmrxlut ... 55
5.2.27 dwt_enablegpioclocks .. 56
5.2.28 dwt_setgpiomode ... 56
5.2.29 dwt_setgpiodir ... 57
5.2.30 dwt_setgpiovalue ... 57
5.2.31 dwt_pgf_cal .. 59
5.2.32 dwt_run_pgfcal .. 59
5.2.33 dwt_pll_cal ... 60
5.2.34 dwt_setdwstate .. 60
5.2.35 dwt_enable_disable_eq ... 60
5.2.36 dwt_configure_rf_port ... 61
5.2.37 dwt_configure_and_set_antenna_selection_gpio ... 62
5.2.38 dwt_wifi_coex_set .. 62
5.2.39 dwt_set_fixedsts ... 63
5.2.40 dwt_set_alternative_pulse_shape ... 63
5.2.41 dwt_config_ostr_mode .. 64
5.2.42 dwt_setchannel .. 65
5.2.43 dwt_setstslength .. 66
5.2.44 dwt_configtxrxfcs ... 66
5.2.45 dwt_setphr ... 66
5.2.46 dwt_setdatarate ... 67
5.2.47 dwt_setrxpac .. 68
5.2.48 dwt_setsfdtimeout ... 69
5.2.49 dwt_settxpower .. 69
5.2.50 dwt_convert_tx_power_to_index .. 70
5.2.51 dwt_configureisr ... 70
5.2.52 dwt_setpdoamode.. 71
5.2.53 dwt_xtal_temperature_compensation ... 71
5.2.54 dwt_settxcode .. 72
5.2.55 dwt_setrxcode .. 72

5.3 TX/RX AND TIMESTAMP APIS .. 73
5.3.1 dwt_writetxdata ... 73
5.3.2 dwt_writetxfctrl .. 74
5.3.3 dwt_starttx ... 75
5.3.4 dwt_setdelayedtrxtime... 76
5.3.5 dwt_setreferencerxtime ... 78
5.3.6 dwt_readtxtimestamp .. 79
5.3.7 dwt_readtxtimestamplo32 ... 79
5.3.8 dwt_readtxtimestamphi32 ... 80
5.3.9 dwt_readrxtimestamp .. 80

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.3.10 dwt_readrxtimestamp_ipatov .. 81
5.3.11 dwt_readrxtimestamp_sts ... 81
5.3.12 dwt_readrxtimestampunadj ... 82
5.3.13 dwt_readrxtimestamplo32 ... 82
5.3.14 dwt_readrxtimestamphi32 ... 83
5.3.15 dwt_readsystime .. 83
5.3.16 dwt_readsystimestamphi32 ... 84
5.3.17 dwt_reset_system_counter .. 84
5.3.18 dwt_forcetrxoff ... 85
5.3.19 dwt_rxenable .. 85
5.3.20 dwt_setsniffmode ... 86
5.3.21 dwt_setdblrxbuffmode ... 87
5.3.22 dwt_signal_rx_buff_free .. 88
5.3.23 dwt_setrxtimeout ... 88
5.3.24 dwt_setrxaftertxdelay .. 89
5.3.25 dwt_setpreambledetecttimeout ... 89
5.3.26 dwt_readrxdata .. 90
5.3.27 dwt_read_rx_scratch_data .. 90
5.3.28 dwt_write_rx_scratch_data ... 91

5.4 DIAGNOSTIC APIS .. 91
5.4.1 dwt_readaccdata ... 91
5.4.2 dwt_configciadiag .. 93
5.4.3 dwt_readdiagnostics .. 94
5.4.4 dwt_readdiagnostics_acc ... 97
5.4.5 dwt_readcir .. 98
5.4.6 dwt_readcir_48b .. 100
5.4.7 dwt_readpdoa .. 100
5.4.8 dwt_readtdoa ... 101
5.4.9 dwt_read_tdoa_pdoa ... 101
5.4.10 dwt_get_dgcdecision .. 102
5.4.11 dwt_configeventcounters ... 102
5.4.12 dwt_readeventcounters ... 102
5.4.13 dwt_readclockoffset ... 104
5.4.14 dwt_readcarrierintegrator ... 105
5.4.15 dwt_readstsquality ... 106
5.4.16 dwt_readstsstatus .. 107
5.4.17 dwt_readctrdbg .. 108
5.4.18 dwt_readdgcdbg .. 108
5.4.19 dwt_readCIAversion ... 108
5.4.20 dwt_getcirregaddress ... 109
5.4.21 dwt_get_reg_names .. 109
5.4.22 dwt_nlos_alldiag .. 110
5.4.23 dwt_nlos_ipdiag ... 111
5.4.24 dwt_capture_adc_samples .. 112
5.4.25 dwt_read_adc_samples ... 112
5.4.26 dwt_readpllstatus ... 113
5.4.27 dwt_calculate_rssi .. 114

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.4.28 dwt_calculate_first_path_power ... 114
5.5 SLEEP/WAKEUP APIS ... 115

5.5.1 dwt_calibratesleepcnt .. 115
5.5.2 dwt_configuresleepcnt ... 116
5.5.3 dwt_configuresleep .. 117
5.5.4 dwt_entersleep ... 119
5.5.5 dwt_entersleepaftertx .. 120
5.5.6 dwt_entersleepafter ... 121
5.5.7 dwt_spicswakeup ... 122
5.5.8 dwt_readwakeuptemp ... 123
5.5.9 dwt_readwakeupvbat .. 123
5.5.10 dwt_wakeup_ic .. 124
5.5.11 dwt_ds_en_sleep .. 124

5.6 ISR AND CALLBACK APIS .. 125
5.6.1 dwt_setcallbacks .. 125
5.6.2 dwt_setinterrupt... 127
5.6.3 dwt_setinterrupt_db .. 130
5.6.4 dwt_ds_setinterrupt_SPIxavailable .. 131
5.6.5 dwt_checkirq .. 131
5.6.6 dwt_isr .. 132
5.6.7 dwt_writesysstatuslo .. 136
5.6.8 dwt_writesysstatushi .. 136
5.6.9 dwt_readsysstatuslo ... 136
5.6.10 dwt_readsysstatushi ... 137
5.6.11 dwt_writerdbstatus .. 137
5.6.12 dwt_readrdbstatus ... 138

5.7 MAC CONFIGURATION APIS .. 138
5.7.1 dwt_setpanid .. 138
5.7.2 dwt_setaddress16 .. 138
5.7.3 dwt_seteui .. 139
5.7.4 dwt_geteui ... 139
5.7.5 dwt_configureframefilter ... 140
5.7.6 dwt_configure_le_address ... 141
5.7.7 dwt_enableautoack .. 141
5.7.8 dwt_getframelength .. 142

5.8 TEMPERATE AND VOLTAGE READING APIS ... 143
5.8.1 dwt_readtempvbat ... 143
5.8.2 dwt_convertrawtemperature ... 143
5.8.3 dwt_convertrawvoltage ... 144

5.9 OTP AND AON ACCESS APIS ... 144
5.9.1 dwt_otpread ... 144
5.9.2 dwt_otpwriteandverify ... 145
5.9.3 dwt_otpwrite .. 147
5.9.4 dwt_aon_read .. 148
5.9.5 dwt_aon_write ... 148
5.9.6 dwt_clearaonconfig .. 149

5.10 TX TEST APIS .. 149

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.10.1 dwt_setfinegraintxseq .. 149
5.10.2 dwt_setxtaltrim .. 150
5.10.3 dwt_configcwmode .. 150
5.10.4 dwt_configcontinuousframemode ... 151
5.10.5 dwt_readpgdelay ... 151
5.10.6 dwt_repeated_cw ... 152
5.10.7 dwt_repeated_frames .. 152
5.10.8 dwt_stop_repeated_frames ... 153
5.10.9 dwt_disablecontinuousframemode .. 153
5.10.10 dwt_disablecontinuouswavemode... 153
5.10.11 dwt_calcbandwidthadj ... 153
5.10.12 dwt_calcpgcount .. 154

5.11 AES APIS ... 155
5.11.1 dwt_configure_aes ... 155
5.11.2 dwt_set_keyreg_128 .. 155
5.11.3 dwt_do_aes .. 156
5.11.4 dwt_mic_size_from_bytes .. 156

5.12 UWB TIMER APIS ... 157
5.12.1 dwt_timers_reset ... 157
5.12.2 dwt_timers_read_and_clear_events .. 157
5.12.3 dwt_configure_timer .. 157
5.12.4 dwt_configure_wificoex_gpio .. 159
5.12.5 dwt_set_timer_expiration .. 159
5.12.6 dwt_timer_enable .. 160

5.13 SPI DRIVER FUNCTIONS ... 160
5.13.1 writetospi .. 161
5.13.2 writetospiwithcrc .. 161
5.13.3 readfromspi .. 162

5.14 MUTUAL-EXCLUSION API FUNCTIONS .. 163
5.14.1 decamutexon .. 163
5.14.2 decamutexoff .. 164

5.15 SLEEP FUNCTION .. 164
5.15.1 deca_sleep .. 165
5.15.2 deca_usleep .. 165

5.16 DUAL SPI SEMAPHORE CONTROL FUNCTIONS ... 166
5.16.1 dwt_ds_sema_request ... 166
5.16.2 dwt_ds_sema_release .. 166
5.16.3 dwt_ds_sema_force ... 166
5.16.4 dwt_ds_sema_status .. 167
5.16.5 dwt_ds_sema_status_hi ... 167

5.17 SUBSIDIARY FUNCTIONS ... 167
5.17.1 dwt_writetodevice .. 167
5.17.2 dwt_readfromdevice .. 168
5.17.3 dwt_xfer3xxx .. 169
5.17.4 dwt_read32bitreg ... 170
5.17.5 dwt_read32bitoffsetreg ... 170
5.17.6 dwt_write32bitreg .. 170

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.17.7 dwt_write32bitoffsetreg .. 170
5.17.8 dwt_read16bitoffsetreg ... 170
5.17.9 dwt_write16bitoffsetreg .. 170
5.17.10 dwt_read8bitoffsetreg ... 170
5.17.11 dwt_write8bitoffsetreg .. 171
5.17.12 dwt_modify32bitoffsetreg ... 171
5.17.13 dwt_modify16bitoffsetreg ... 171
5.17.14 dwt_modify8bitoffsetreg ... 171
5.17.15 dwt_writefastCMD ... 171
5.17.16 dwt_readfastCMD .. 172
5.17.17 dwt_read_reg ... 172
5.17.18 dwt_write_reg .. 173

6 APPENDIX 1 – SIMPLE EXAMPLES .. 173

6.1 PACKAGE STRUCTURE .. 174
6.2 BUILDING AND RUNNING THE EXAMPLES ... 175
6.3 EXAMPLES LIST .. 177

6.3.1 Example 00a: reading device ID ... 177
6.3.2 Example 01a: simple TX .. 177
6.3.3 Example 01b: TX with sleep .. 177
6.3.4 Example 01c: TX with auto sleep .. 177
6.3.5 Example 01d: TX with timed sleep .. 177
6.3.6 Example 01e: TX with CCA .. 177
6.3.7 Example 01g: simple TX with STS ... 178
6.3.8 Example 01h: simple TX for PDOA .. 178
6.3.9 Example 01i: simple TX with AES .. 178
6.3.10 Example 01j: simple TX for automotive build ... 178
6.3.11 Example 02a: simple RX .. 178
6.3.12 Example 02c: simple RX with diagnostics ... 178
6.3.13 Example 02d: RX SNIFF mode ... 179
6.3.14 Example 02e: Double Buffer RX .. 179
6.3.15 Example 02f: RX with XTAL trimming ... 179
6.3.16 Example 02g: simple RX with STS ... 179
6.3.17 Example 02h: simple RX with PDOA ... 179
6.3.18 Example 02i: simple RX AES .. 179
6.3.19 Example 02j: simple capture and reading of ADC samples .. 179
6.3.20 Example 02k: simple RX and CIR reading test .. 180
6.3.21 Example 03a: TX then wait for a response ... 180
6.3.22 Example 03b: RX then send a response .. 180
6.3.23 Example 03d: TX then wait for a response using interrupts ... 180
6.3.24 Example 04a: continuous wave mode .. 180
6.3.25 Example 04b: continuous frame mode ... 181
6.3.26 Example 05a: double-sided two-way ranging (DS TWR) initiator .. 182
6.3.27 Example 05b: double-sided two-way ranging (DS TWR) responder ... 182
6.3.28 Example 05c: double-sided two-way ranging with STS (DS TWR STS) initiator 183
6.3.29 Example 05d: double-sided two-way ranging with STS (DS TWR STS) responder 183
6.3.30 Example 06a: single-sided two-way ranging (SS TWR) initiator ... 183

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

6.3.31 Example 06b: single-sided two-way ranging (SS TWR) responder ... 184
6.3.32 Example 06e: single-sided two-way ranging (SS TWR) initiator with AES 184
6.3.33 Example 06f: single-sided two-way ranging responder (SS TWR) with AES 185
6.3.34 Example 07a: Auto ACK TX ... 185
6.3.35 Example 07b: Auto ACK RX ... 185
6.3.36 Example 11a: Use of SPI CRC .. 185
6.3.37 Example 13a: Use of DW3XXX GPIO lines ... 185
6.3.38 Example 14: OTP Write ... 186
6.3.39 Example 15: LE (Low-Energy) pend ... 186
6.3.40 Example 16 PLL Cal ... 186
6.3.41 Example 17 Bandwidth Calibration .. 186
6.3.42 Example 18: Timer Example ... 186
6.3.43 Example 19: TX Power Adjustment Example .. 186
6.3.44 Example 20: Simple AES .. 186
6.3.45 Example 21: Linear Tx power example ... 186

7 APPENDIX 2 – BIBLIOGRAPHY: ... 187

8 DOCUMENT HISTORY .. 188

9 MAJOR CHANGES .. 189

9.1 RELEASE 4.9 ... 189
9.2 RELEASE 4.8 ... 190
9.3 RELEASE 4.7 ... 190
9.4 RELEASE 4.6 ... 190
9.5 RELEASE 4.1 ... 190
9.6 RELEASE 3.0 ... 190
9.7 RELEASE 2.0 ... 190

10 ABOUT DECAWAVE ... 192

TABLE OF CONTENTS

 List of Tables

TABLE 1: CONFIG PARAMETER TO DWT_INITIALISE() FUNCTION .. 29

TABLE 2: SUPPORTED UWB CHANNELS AND RECOMMENDED PREAMBLE CODES ... 35

TABLE 3: RECOMMENDED PREAMBLE LENGTHS .. 36

TABLE 4: RECOMMENDED PAC SIZE .. 36

TABLE 5: STSMODE PARAMETER TO DWT_CONFIGURE() FUNCTION ... 37

TABLE 6: PGDLY RECOMMENDED VALUES ... 42

TABLE 7: TX POWER RECOMMENDED VALUES.. 42

TABLE 8: DWT_TXCONFIG_T PARAMETER: POWER FUNCTION .. 43

TABLE 9: SFDTYPE PARAMETER TO DWT_CONFIGURESFDTYPE() FUNCTION .. 51

TABLE 10: VALID CRC_MODE OPTIONS .. 55

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

TABLE 11: CHANNEL 5 LOOKUP TABLE CONFIGURATION FOR DW3XXX DEVICES .. 55

TABLE 12: CHANNEL 9 LOOKUP TABLE CONFIGURATION FOR DW3XXX DEVICES .. 56

TABLE 13: MODE PARAMETER TO DWT_STARTTX() FUNCTION .. 76

TABLE 14: MODE PARAMETER TO DWT_RXENABLE() FUNCTION .. 86

TABLE 15: VALUES FOR DWT_CONFIGCIADIAG() ENABLE_MASK PARAMETER ... 94

TABLE 16: STSSTATUS VALUES .. 107

TABLE 17: BITMASK VALUES FOR DWT_CONFIGURESLEEP() MODE BIT MASK .. 118

TABLE 18: BITMASK VALUES FOR DWT_CONFIGURESLEEP() WAKE BIT MASK .. 118

TABLE 19: BITMASK_LO VALUES FOR CONTROL OF COMMON EVENT INTERRUPTS.. 128

TABLE 20: BITMASK VALUES FOR CONTROL OF RX BUFFER EVENT INTERRUPTS ... 130

TABLE 21: LIST OF EVENTS HANDLED BY THE DWT_ISR() FUNCTION AND SIGNALLED IN CALL-BACKS .. 132

TABLE 22: BITMASK VALUES FOR FRAME FILTERING ENABLING/DISABLING ... 140

TABLE 23: OTP MEMORY MAP .. 145

TABLE 24: SPI_MODES_E ENUM VALUES (SPI READ/WRITE MODES) .. 169

TABLE 25: LIST OF SUPPORTED COMMANDS .. 171

TABLE 26: API PACKAGE STRUCTURE ... 174

TABLE 27: BIBLIOGRAPHY ... 187

TABLE 28: DOCUMENT HISTORY... 188

List of Figures

FIGURE 1: GENERAL SOFTWARE FRAMEWORK OF THE DEVICE DRIVER ... 14

FIGURE 2: DEVICE DRIVER COMPATIBILITY LAYER ... 16

FIGURE 3: TYPICAL FLOW OF INITIALISATION.. 17

FIGURE 4: INTERRUPT HANDLING .. 18

FIGURE 5: STANDARD COMPLIANT VERSUS SECURE RANGING PACKET ... 37

FIGURE 6: AES IN COUNTER MODE BASED CPRNG .. 38

FIGURE 7: INTERRUPT HANDLING .. 135

FIGURE 8: API PACKAGE STRUCTURE TREE .. 174

FIGURE 9: CONTINUOUS WAVE OUTPUT ... 181

FIGURE 10: CONTINUOUS FRAME OUTPUT .. 182

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

1 INTRODUCTION AND OVERVIEW

The DW3xxx IC is a radio transceiver IC (a family of transceivers including DW3000 and DW3720)

implementing the UWB HRP physical layer defined in IEEE 802.15.4 standard [3]. For more details of

this device the reader is referred to:

• The Data Sheet [1]

• The User Manual [2]

This document, “DW3xxx Device Driver - Application Programming Interface (API) Guide” is a guide

to the device driver software developed by Decawave to drive Decawave’s family of UWB radio

transceiver ICs: DW3000 and DW3720.

The device driver is essentially a set of low-level functions providing a means to exercise the main

features of the transceiver without having to deal with the details of accessing the device directly

through its SPI interface register set.

The device driver is provided as source code to allow it to be ported to any target microprocessor

system with an SPI interface1. The source code employs the C programming language.

The device driver is controlled through its Application Programming Interface (API) which is

comprised of a set of functions. This document is predominately a guide to the device driver API

describing each of the API functions in detail in terms of its parameters, functionality and utility.

This document relates to: "DW3xxx Device Driver Version 08.02.02"

The device driver version information may be found in source code file “deca_version.h”.

1 Since the DW3xxx IC is controlled through its SPI interface, an SPI interface is a mandatory requirement for

the system.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

2 GENERAL FRAMEWORK

Figure 1 shows the general framework of the software system encompassing the DW3xxx device

driver. The device driver controls the IC through its SPI interface. The device driver abstracts the

target SPI device by calling it through generic functions writetospi() and readfromspi (). In porting the

IC device driver to different target hardware, the body of these SPI functions are written/re-

written/provided to drive the target microcontroller device’s physical SPI hardware. The

initialisation of the physical SPI interface mode and data rate is considered to be part of the target

system outside the IC device driver.

Figure 1: General software framework of the device driver

The control of the IC through the device driver software is achieved via a set of API functions,

documented in section 5 – API function descriptions below, and called from the upper layer

application code.

The IRQ interrupt line output from the IC (assuming interrupts are being employed) is connected to

the target microcontroller system’s interrupt handling logic. Again, this is considered to be outside

DW3000 API Functions

Interrupt

HandlerDW3000 Device Driver

DW3000 PHYSICAL IC

writetospi() readfromspi()
dwt_isr()

Target SPI Target IRQ

S
P

IC
L
K

S
P

IC
S

n

S
P

IM
O

S
I

S
P

IM
IS

O

IR
Q

Upper Layer / Application Code

TX

callback

RX

callbacks

S
P

I
in

iti
a

lis
a

tio
n
 a

n
d
 c

o
n
fi
g
u

ra
tio

n

Software

TX Done
RX Okay
RX Error
RX Timeout

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

the device driver. It is assumed that the target systems interrupt handling logic and its associated

target specific interrupt handling software will correctly identify the assertion of the IC’s IRQ and will

as a result call the device driver’s interrupt handling function dwt_isr() to process the interrupt.

The device driver’s dwt_isr () function processes the IC interrupts and calls TX, RX, RX error, RX

timeout, SPI error or SPI ready call-back functions in the upper layer application code. This is done

via function pointers *cbTxDone(), *cbRxOk(), *cbRxTo, *cbRxErr(), *cbSPIErr() and *cbSPIRdy() or

*dualSPIavailable() which are configured to call the upper layer application code’s own call-back

functions via the dwt_setcallbacks () API function.

Using interrupts is recommended, but it is possible to drive the IC without employing interrupts. In

this case the background loop can periodically call the device driver’s dwt_isr () function, which will

poll the IC status register and process any events that are active.

The following is IMPORTANT:

Note background application activity invoking API functions employing the SPI interface can

conflict with foreground interrupt activity also needing to employ the SPI interface.

The device driver’s interrupt handler accesses the IC through the writetospi() and readfromspi ()

functions, and, it is generally expected that the call-back functions will also access the IC through the

device driver’s API functions which ultimately also call the writetospi() and readfromspi () functions.

This means that the writetospi() and readfromspi () functions need to incorporate protection

against foreground activity occurring when they are being used in the background. This is

achieved by incorporating calls to decamutexon () and decamutexoff() within the writetospi() and

readfromspi () functions to disable interrupts from the IC from being recognised while the

background SPI access is in progress.

Examples of be decamutexon()and decamutexoff() within the writetospi() and readfromspi()

functions found in source code file “deca_irq.c” and the definitions of the writetospi() and

readfromspi() functions in “deca_spi.c” source file.

Other than the provisions for interrupt handling, the device driver and its API functions are not

written to be re-entrant or for simultaneous use by multiple threads. The design in general assumes

a single caller that allows each function to complete before it is called again.

2.1 Compatibility Layer

The driver also includes a “compatibility layer” that sits within the device driver. Its purpose is to

“route” the API calls to the correct function for the calling device. For example, if device “A” wants

to check the version of the API, the compatibility layer will route it to the correct code for device

“A”. If device “B” wants to do the same, it will route it to the correct code for device “B”. However,

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

the upper layer / application code will only need to call one API and the device driver will route to

the correct device by itself.

Figure 2: Device Driver Compatibility Layer

The main purpose of this compatibility layer is to allow for inter-operability between

Qorvo/Decawave UWB devices of the same family. However, it is only implemented for one device

at present. Future releases will allow for compatibility with other UWB devices of the same family.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

3 TYPICAL SYSTEM START-UP

Figure 3 shows the typical flow of initialisation of the DW3xxx in a microprocessor system.

Figure 3: Typical flow of initialisation

Power

ON

Microprocessor initialisation of its system hardware

including the SPI interface necessary for talking to the

DW3000 via writetospi() and readfromspi() functions.

After power on the DW3000 Will transition into its

IDLE_RC state. This is a lower power state than IDLE.

The host should wait for the SPI ready signal before

communication with the device. The host can then

communicate at full SPI rate (up to 38 MHz). Then the

microprocessor system should call the API functions

dwt_initialise() and dwt_configure() to initialise the DW3000

and configure it for operation. At the end of dwt_configure()

the DW3000 will be put into IDLE state, which is needed

for TX and RX timestamping.

The microprocessor system can then enable its interrupt

handling system to accept interrupts from the DW3000

and the application can progress into its normal operating

flow -- initiating a transmission or reception as appropriate

from the application and/or putting the DW3000 into a

low-power sleep mode until it is needed for operation.

NOTE: DW3000 SPI ready event is by default masked to

enable the interrupt to be generated. Thus once the

device is powered on or reset the interrupt line will be

asserted.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

4 INTERRUPT HANDLING

Figure 4 shows how the DW3720 interrupts should be processed by the microcontroller system.

Once the interrupt is active, the microcontroller’s target specific interrupt handler for that interrupt

line should get called. This in turn calls the device driver’s interrupt handler service routine, the

dwt_isr() API function, which processes the event that triggered the interrupt.

Figure 4: Interrupt handling

The flow shown above, with the rechecking of continued IRQ line activation and calling the dwt_isr()

API function again, is only required for edge sensitive interrupts. This is done in case another

interrupt becomes pending during the processing of the first interrupt, in this case if all interrupt

sources are not cleared the IRQ line will not be de-asserted and edge sensitive interrupt processing

hardware will not see another edge. For proper level sensitive interrupts only steps numbered 1, 2,

DW IRQ is

asserted

Assuming interrupts are enabled,

target specific hardware invokes target

specific interrupt processing software

Read state of DW IRQ line input to

microprocessor to check whether a

DW IRQ is pending

NO

1

Call dwt_isr() the DW device driver s

interrupt handler routine

2

Clear and re-enable target specific

interrupt processing hardware for the

DW IRQ line and return from the

interrupt servicing routine

3

IRQ

Pending

?

dwt_isr() will process the event that triggered the

interrupt (clearing it to enable a new interrupt on

the next event) and call the configured call-back

functions (e.g. TX or RX) as appropriate.

YES

Once complete,

return from Interrupt

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

and 3 are required – any still pending interrupt should cause the interrupt handler to be re-invoked

as soon as it finishes processing the first interrupt.

More information about individual interrupt events and associated processing is shown in Figure 7:

Interrupt handling.

5 API FUNCTION DESCRIPTIONS

This section describes device driver’s API function calls. The API functions are provided to aid

developers in driving the DW3xxx (Decawave’s IEEE 802.15.4 [3] UWB transceiver IC).

These functions are implemented in the device driver source code file “deca_device.c”, written in

the ‘C’ programming language.

The device driver code interacts with the IC using simple SPI read and write functions. These are

abstracted from the physical hardware, and are easily ported to any specific SPI implementation of

the target system. There are two SPI functions: writetospi() and readfromspi() these prototypes are

defined in the source code file “deca_spi.c”.

The functions of the device driver are covered below in individual sub-sections.

5.1 Initialise APIs

5.1.1 dwt_probe

int dwt_probe(struct dwt_probe_s *probe_interf);

This function will read the device identifier (DEV_ID) from the device and initialise all the required

pointers for the API calls to pass through the Compatibility Layer based on the device identifier. This

function must be called first in any application. Otherwise, all other subsequent API calls will fail as

they will not be able to pass through the compatibility layer correctly.

The dwt_probe function needs a list of driver descriptors as an input parameter. The function will

iterate over the number of drivers in the list and select the driver that corresponds to the IC it is

connected to.

The driver descriptors are defined as const struct dwt_driver_s in the driver sources. The descriptors

contain information such as device identifiers, device names, device API versions, etc.

If the DEV_ID that was read from the device matches the DEV_ID that is stored in the device

descriptor structure in memory, then this function will set the compatibility layer to ‘point’ to the

correct code.

Parameters:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Type Name Description

dwt_probe_s probe_interf

This object is defining the external functions and objects which

are required to operate the driver correctly. See type

description below.

// Driver descriptor is defined as a constant in each device driver.

struct dwt_driver_s

{

 uint32_t devid;

 uint32_t devmatch;

 const char *name;

 const char *version;

 const struct dwt_ops_s *dwt_ops;

 const struct dwt_mcps_ops_s *dwt_mcps_ops;

 uint32_t vernum;

};

// A list of device descriptors must be defined in host application and passed as

parameter to the dwt_probe APi through the dwt_probe_s->driver_list object.

extern const struct dwt_driver_s dw3000_driver;

extern const struct dwt_driver_s dw3720_driver;

const struct dwt_driver_s* tmp_ptr[] = { &dw3000_driver, &dw3720_driver };

struct dwt_probe_s

 {

 void *dw; // Pointer to externally defined dwchip_s

 void *spi; // Pointer to externally defined dwt_spi_s structure

 void(*wakeup_device_with_io)(void); // Function waking-up device through

SPI_CS or WAKEUP IO pins.

 struct dwt_driver_s **driver_list; // List of device descriptor to iterate

over to detect what driver should be selected for the connected IC

 uint8_t dw_driver_num; // Number of driver descriptors in the driver list

 };

Return Parameters:

Type Description

int DWT_SUCCESS if the DEV_ID read from the device matches a device descriptor structure

stored in memory

DWT_ERROR if no DEV_ID can be read from device, or if the DEV_ID does not match

what is stored in memory

Notes:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.1.2 dwt_update_dw

struct dwchip_s *dwt_update_dw(struct dwchip_s *new_dw)

This function updates the pointer to dw instance withing the driver. This can be used when a

dwchip_s object is instantiated outside the driver.

Parameters:

Type Name Description

struct

dwchip_s *
New_dw

Pointer to the new dw chip structure to be used within driver.

Return Parameters:

Type Description

struct

dwchip_s

*

Pointeur to the initial dw chip structure instantiated inside the driver.

Notes:

5.1.3 dwt_apiversion

int32_t dwt_apiversion(void);

This function returns the version of the API as defined by DRIVER_VERSION_HEX.

Parameters:

none

Return Parameters:

Type Description

int32_t Driver version e.g. 0x050600

Notes:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.1.4 dwt_version_string

char *dwt_version_string(void);

This function returns the version string of the API as defined by device descriptor structure (struct

dwt_driver_s). It will return a char pointer to the string: DRIVER_VERSION_STR.

Parameters:

none

Return Parameters:

Type Description

char* char pointer to device descriptor version name (e.g. DW3000 Device Driver Version

05.00.00").

Notes:

5.1.5 dwt_readdevid

uint32_t dwt_readdevid(void);

This function returns the device identifier (DEV_ID) register value (32-bit value). It reads the DEV_ID

register (0x00) and returns the result to the caller. This may be used for instance by the application

to verify the DW IC is connected properly over the SPI bus and is running.

Parameters:

none

Return Parameters:

Type Description

uint32_t 32-bit device ID value, e.g. for DW3720 the device ID is 0xDECA0314.

Notes:

This function can be called any time to read the device ID value. A return value of 0xFFFFFFFF or 0x0

indicates an error unless the device is in DEEP_SLEEP or SLEEP mode.

Example code:

 uint32_t devID = dwt_readdevid();

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.1.6 dwt_check_dev_id

int dwt_check_dev_id(void);

This function checks if the device ID that is being read back from the DEV_ID register is a correct

value. If the device ID is incorrect, it can mean that either something is wrong with the SPI reads to

the DW3720, or the driver is reading a device ID from an incompatible version of hardware. The

latter can occur if a newer version of the software is used to try read from an older version of

hardware. It is useful to run this function upon initialisation.

Parameters:

none

Return Parameters:

Type Description

int DWT_SUCCESS is returned if the device ID read back from the device is correct.

DWT_ERROR is returned if the device ID does not conform with this version of software.

Notes:

Calling this function upon initialisation can be beneficial in cases where there is potential for versions

of software and hardware to be out of sync.

Example code:

 /* Reads and validate device ID returns DWT_ERROR if it does not match

expected else DWT_SUCCESS */

 int err;

if ((err=dwt_check_dev_id())==DWT_SUCCESS)

{

 printf("DEV ID OK\n");

}

else

{

 printf("DEV ID FAILED\n");

}

5.1.7 dwt_getpartid

uint32_t dwt_getpartid(void);

This function returns the part identifier as programmed in the factory during device test and

qualification. (dwt_initialise() must be called prior to this)

Parameters:

none

Return Parameters:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Type Description

uint32_t 32-bit part ID value.

Notes:

This function can be called any time to read the locally stored value which will be valid after device

initialisation is done by a call to the dwt_initialise () function.

Example code:

 uint32_t partID = dwt_getpartid();

5.1.8 dwt_getlotid

uint64_t dwt_getlotid(void);

This function returns the lot identifier as programmed in the factory during device test and

qualification.(dwt_initialise() must be called prior to this)

Parameters:

none

Return Parameters:

Type Description

uint64_t 64-bit lot ID value.

Notes:

This function can be called any time to read the locally stored value which will be valid after device

initialisation is done by a call to the dwt_initialise() function .

Example code:

 Uint64_t lotID = dwt_getlotid();

5.1.9 dwt_geticrefvolt

uint8_t dwt_geticrefvolt(void);

During the IC manufacturing test, a 3.0 volt reference level is applied to the power the device and

the battery voltage reported by the battery voltage monitor SAR A/D convertor is sampled and

programmed into OTP address 0x8 (VBAT_ADDRESS). This reference value may be used to

calibrate/interpret battery voltage monitor values during IC use. The dwt_geticrefvolt() function

returns this factory reference voltage value.

Parameters:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

none

Return Parameters:

Type Description

uint8_t 8-bit V measured value at 3.0 V.

Notes:

This function can be called any time to read the locally stored value which will be valid after device

initialisation is done by a call to the dwt_initialise() API function.

5.1.10 dwt_geticreftemp

uint8_t dwt_geticreftemp(void);

During the IC manufacturing test, in a controlled environment with approximately 22 °C ambient

temperature the temperature monitor SAR A/D convertor is sampled and programmed into OTP

address 0x9 (VTEMP_ADDRESS). This reference value may be used to calibrate/interpret

temperature monitor values during IC use. The dwt_geticreftemp() API function returns this factory

reference temperature value.

Parameters:

none

Return Parameters:

Type Description

uint8_t 8-bit Temperature measured value at 22 ˚C.

Notes:

This function can be called any time to read the locally stored value which will be valid after device

initialisation is done by a call to the dwt_initialise() API function.

5.1.11 dwt_getxtaltrim

uint8_t dwt_getxtaltrim(void);

This function returns the current value of XTAL trim. If called after dwt_initialise() API on power up, it

will either contain crystal trim value loaded from OTP memory or a default value.

Parameters:

 none

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Return Parameters:

Type Description

uint8_t Current crystal trim value.

Notes:

5.1.12 dwt_setlocaldataptr

int dwt_setlocaldataptr(unsigned int index);

The DW3xxx API uses an internal data structure to hold some local state data. The device driver is

able to handle multiple DW3xxx devices by using an array of those structures, as set by the #define

of the DWT_NUM_DW_DEV pre-processor symbol. This dwt_setlocaldataptr() API function sets the

local data structure pointer to point to the element in the local array as given by the index.

Parameters:

Type Name Description

unsigned int index
This selects the array element to point to. Must be within the array

bounds, i.e. < DWT_NUM_DW_DEV.

Return Parameters:

Type Description

int Return value can be either DWT_SUCCESS = 0 or DWT_ERROR = -1.

Notes:

The local device static data is an array to support multiple devices, e.g. in testing applications and

platforms. This function selects which element of the array is being accessed. For example, if two

DW3720 devices are controlled in your application then this function should be called before

accessing either of the devices to configure the local structure pointer. To handle multiple devices

the low-level SPI access function also needs to be set to talk to the correct device.

5.1.13 dwt_otprevision

uint8_t dwt_otprevision(void);

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This function returns OTP revision as read during the call to dwt_initialise(). This location is

suggested for customer programming, (and is used in Decawave’s evaluation board products to

identify different/changes in usage of the OTP area).

Parameters:

none

Return Parameters:

Type Description

uint8_t 8-bit OTP revision value.

5.1.14 dwt_softreset

void dwt_softreset(int reset_semaphore);

This function performs a software-controlled reset of the transceiver IC. All of the IC configurations

will be reset back to default. Please refer to the User Manual [2] for details of IC default

configuration register values. The SPI rate must be set to <= 7 MHz before a calling this API.

Parameters:

Type Name Description

int reset_semaphore

This specifies whether to reset the dual SPI semaphore. If the

semaphore is not reset, and it has been requested e.g. by

host on SPI2, the host on SPI2 will still have control. This

parameter does not have any effect on DW3000 device.

Return Parameters:

none

Notes:

This function is used to reset the IC, e.g. before applying new configuration to clear all of the

previously set values. After reset the IC will be in the INIT state, and all of the registers will have

default values. Any values programmed into the always on (AON) low-power configuration array store

will also be cleared. Then it will progress to IDLE_RC state. Once in IDLE_RC the SPI_RDY event will be

set.

Note: The RSTn pin can also be used to reset the device. Host microprocessor can use this pin to reset

the device instead of calling dwt_softreset() function. The pin should be driven low (for 10 ns) and

then left in open-drain mode. RSTn pin should never be driven high.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

In DW37XX API this semaphore will be reset depending on the value of the input parameter

(reset_semaphore).

5.1.15 dwt_checkidlerc

uint8_t dwt_checkidlerc(void);

The DW3XXX states are described in the User Manual. On power up, or following a reset the device

will progress from INIT_RC to IDLE_RC. Once the device is in IDLE_RC SPI rate ca be increased to

more than 7 MHz. The device will automatically proceed from INIT_RC to IDLE_RC and both INIT_RC

and SPI_RDY event flags will be set, once device is in IDLE_RC. It is recommended that host waits for

SPI_RDY event, which will also generate interrupt once device is ready after reset/power on. If the

host cannot use interrupt as a way to check device is ready for SPI comms, then we recommend the

host waits for 2 ms and reads this function, which checks if the device is in IDLE_RC state by reading

the SYS_STATUS register and checking for the IDLE_RC event to be set. If host initiates SPI

transaction with the device prior to it being ready, the SPI transaction may be incorrectly decoded by

the device and device may be misconfigured. Reading registers over SPI prior to device being ready

may return garbage on the MISO, which may confuse the host application.

Parameters:

none

Return Parameters:

Type Description

uint8_t Return value is 1 if device is in IDLE_RC state and 0 otherwise.

Notes:

It is advised to call this function before calling dwt_initialise() in order to check that the device is in

the correct state before initializing.

5.1.16 dwt_initialise

int dwt_initialise(int mode);

The dwt_initialise() is function which initialises the DW3xxx transceiver and sets up values in an
internal static data structure used within the device driver functions. This static data is private data
used within the device driver implementation.

Parameters:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Type Name Description

int mode

This is a bitmask which specifies which configuration to load from

OTP as part of initialisation Table 1 shows the values of individual

bit fields

Return Parameters:

Type Description

int Return values can be either DWT_SUCCESS = 0 or DWT_ERROR = -1.

Notes:

This dwt_initialise() function is the first function that should be called to initialise the device, e.g.

after the power has been applied. It reads the device ID to verify the IC is one supported by this

software (e.g. for DW3720 the 32-bit device ID value is 0xDECA03xx).

This dwt_initialise() function also reads some data from OTP:

• LDO tune and crystal trim values, which are applied directly if they are valid.

• Device’s Part ID and Lot ID which are stored in driver’s local structure for future access.

If the DWT_ERROR is returned by dwt_initialise() then further configuration and operation of the IC

is not advised, as the IC will not be functioning properly.

Table 1: Config parameter to dwt_initialise() function

Mode
Mask
Value

Description

DWT_READ_OTP_ALL

0x0 Read the part ID, lot ID, ref voltage and temperature from
the OTP

DWT_READ_OTP_PLID_DIS 0x10 Don’t read the part ID or the lot ID from the OTP (neither
SIP/SOC status)

DWT_READ_OTP_VTBAT_DIS 0x40 Don't read the ref voltage from the OTP

DWT_READ_OTP_TMP_DIS 0x80 Don't read the ref temperature from the OTP

Notes:

For more details of the OTP memory programming please refer to section 5.9 OTP and AON access

APIs. Programming OTP memory is a one-time only activity, any values programmed in error cannot

be corrected. Also, please take care when programming OTP memory to only write to the designated

areas – programming elsewhere may permanently damage the IC’s ability to function normally.

Example: - Following power up

//Initialise DW3720 device, load OTP values and

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

dwt_initialise(DWT_READ_OTP_PID | DWT_READ_OTP_LID | DWT_READ_OTP_BAT |

DWT_READ_OTP_TMP)

5.1.17 dwt_settemperature

void dwt_settemperature(int8_t temperature);

This function can be used to set the temperature to be used for PLL calibration of the device.

Parameters:

Type Name Description

Int8_t temperature

Temperature to be used during PLL calibration. If set to -127, the

on-chip temperature sensor is read during dwt_initialise and the

measured temperature is used for PLL calibration.

Return Parameters:

none

Notes:

5.1.18 dwt_getpllcaltemperature

int8_t dwt_getpllcaltemperature(void)

This function returns the temperature used for the PLL calibration.

Parameters:

none

Return Parameters:

Type Description

Int8_t Temperature in Celsius

Notes:

5.1.19 dwt_getwslotid

void dwt_getwslotid(uint8_t *buff_ws_lot_id)

This function returns the read W.S. lot ID of the device.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Parameters:

Type Name Description

uint8_t* buff_ws_lot_id The buffer will contain the value after the function call

Return Parameters:

None

Notes:

5.2 Configure APIs

5.2.1 dwt_configure

int dwt_configure(dwt_config_t *config);

This function is responsible for setting up the channel configuration parameters for use by both the

transmitter and the receiver. The settings are specified by the dwt_config_t structure passed into

the function, see notes below. (Note also there is a separate function for setting preamble length in

blocks of dwt_setplenfine(). This is described in section 5.2.3 below). The device will be put into IDLE

sate after the configuration of the PLL.

Parameters:

Type Name Description

dwt_config_t* config

This is a pointer to the configuration structure, which contains the

device configuration data. Individual fields are described in detail in

the notes below.

typedef struct

{

 uint8_t chan ; //!< channel number {5, 9}

 dwt_tx_plen_e txPreambLength; //!< DWT_PLEN_64..DWT_PLEN_4096

 dwt_pac_size_e rxPAC ; //!< Acquisition Chunk Size (Relates to RX

 // preamble length)

 uint8_t txCode ; //!< TX preamble code

 uint8_t rxCode ; //!< RX preamble code

 dwt_sfd_type_e sfdType ; //!< SFD type (0 - short IEEE 8 standard

// 1 - DW 8, 2 - DW 16, 3 - 4z

// use non-std SFD for better performance

 dwt_uwb_bit_rate_e dataRate ; //!< Data Rate {DWT_BR_850K or DWT_BR_6M8}

 dwt_phr_mode_e phrMode ; //!< PHR mode:

// 0x0 - standard DWT_PHRMODE_STD

// 0x3 - extended frames DWT_PHRMODE_EXT

dwt_phr_rate_e phrRate ; //!< PHR rate {0x0 - standard DWT_PHRRATE_STD,

 // 0x1 - at datarate DWT_PHRRATE_DTA}

 uint16_t sfdTO ; //!< SFD timeout value (in symbols)

dwt_sts_mode_e stsMode ;//!< STS mode (no STS, before PHR or after data)

 dwt_sts_lengths_e stsLength ; //!< STS length

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

 dwt_pdoa_mode_e pdoaMode ; //!< PDOA mode

} dwt_config_t ;

/* Common preamble length codes */

DWT_PLEN_4096 (4096U) //!< Standard preamble length 4096 symbols

DWT_PLEN_2048 (2048U) //!< Non-standard preamble length 2048 symbols
DWT_PLEN_1536 (1536U) //!< Non-standard preamble length 1536 symbols
DWT_PLEN_1024 (1024U) //!< Standard preamble length 1024 symbols
DWT_PLEN_512 (512U) //!< Non-standard preamble length 512 symbols
DWT_PLEN_256 (256U) //!< Non-standard preamble length 256 symbols
DWT_PLEN_128 (128U) //!< Non-standard preamble length 128 symbols
DWT_PLEN_72 (72U) //!< Non-standard length 72
DWT_PLEN_64 (64U) //!< Standard preamble length 64 symbols
DWT_PLEN_32 (32U) //!< Non-standard length 32
DWT_PLEN_16 (16U) //!< Non-standard and not recommended preamble length 16

typedef enum

{

 DWT_BR_850K = 0, //!< UWB bit rate 850 kbits/s

 DWT_BR_6M8 = 1, //!< UWB bit rate 6.8 Mbits/s

 DWT_BR_NODATA = 2, //!< No data (SP3 packet format)

} dwt_uwb_bit_rate_e;

typedef enum

{

 DWT_PRF_16M = 1, //!< UWB PRF 16 MHz

 DWT_PRF_64M = 2, //!< UWB PRF 64 MHz

 DWT_PRF_SCP = 3, //!< SCP UWB PRF ~100 MHz

} dwt_prf_e;

typedef enum

{

 DWT_PAC8 = 0, //!< PAC 8 (recommended for RX of preamble length <=128

 DWT_PAC16 = 1, //!< PAC 16 (recommended for RX of preamble length 256

 DWT_PAC32 = 2, //!< PAC 32 (recommended for RX of preamble length 512

 DWT_PAC4 = 3, //!< PAC 4 (recommended for RX of preamble length < 127

} dwt_pac_size_e;

 typedef enum

{

 DWT_SFD_IEEE_4A = 0, //!< IEEE 8-bit ternary

 DWT_SFD_DW_8 = 1, //!< DW 8-bit

 DWT_SFD_DW_16 = 2, //!< DW 16-bit

 DWT_SFD_IEEE_4Z = 3, //!< IEEE 8-bit binary (4z)

 DWT_SFD_LEN8 = 8, //!< IEEE, and DW 8-bit are length 8

 DWT_SFD_LEN16 = 16, //!< DW 16-bit is length 16

} dwt_sfd_type_e;

typedef enum
{
 DWT_STS_LEN_16 = 1, /*!< STS length 16 is not recommended */
 DWT_STS_LEN_32 = 3,
 DWT_STS_LEN_64 = 7,
 DWT_STS_LEN_128 = 15,
 DWT_STS_LEN_256 = 31,
 DWT_STS_LEN_512 = 63,
 DWT_STS_LEN_1024 = 127,
 DWT_STS_LEN_2048 = 255
 } dwt_sts_lengths_e;

typedef enum

{

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

 DWT_PHRMODE_STD = 0x0, // standard PHR mode

 DWT_PHRMODE_EXT = 0x1, // DW proprietary extended frames PHR mode

} dwt_phr_mode_e;

typedef enum

{

 DWT_PHRRATE_STD = 0x0, // standard PHR rate

 DWT_PHRRATE_DTA = 0x1, // PHR at data rate (6M81)

} dwt_phr_rate_e;

typedef enum

{

 DWT_PDOA_M0 = 0x0, // DW PDOA mode is off

 DWT_PDOA_M1 = 0x1, // DW PDOA mode 1

 DWT_PDOA_M3 = 0x3, // DW PDOA mode 3

} dwt_pdoa_mode_e;

typedef enum

{

 DWT_STS_MODE_OFF = 0x0, // STS is off

 DWT_STS_MODE_1 = 0x1, // STS mode 1

 DWT_STS_MODE_2 = 0x2, // STS mode 2

 DWT_STS_MODE_ND = 0x3, // STS with no data

 DWT_STS_MODE_SDC = 0x8, // Enable Super Deterministic Codes

 DWT_STS_CONFIG_MASK = 0xB,

 DWT_STS_CONFIG_MASK_NO_SDC = 0x3,

} dwt_sts_mode_e;

Return Parameters:

Type Description

int Return values can be either DWT_SUCCESS = 0 or an error: DWT_ERR_PLL_LOCK (-2),

DWT_ERR_RX_CAL_PGF (-3), DWT_ERR_RX_CAL_RESI (-4), DWT_ERR_RX_CAL_RESQ (-

5) or DWT_ERR_RX_ADC_CAL(-6).

Notes:

The dwt_configure() function should be used to configure the IC’s channel (TX/RX) parameters before

receiver enable or before issuing a start transmission command. It can be called again to change

configurations as needed, however before using dwt_configure() the IC should be returned to idle

mode using the dwt_forcetrxoff() API call.

The config parameter points to a dwt_config_t structure that has various fields to select and configure

different parameters within the IC. The fields of the dwt_config_t structure are identified are

individually described below:

Fields Description of fields within the dwt_config_t structure

chan
The chan parameter sets the UWB channel number, (defining the centre

frequency and bandwidth). The supported channels are 5, and 9.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Fields Description of fields within the dwt_config_t structure

txCode and rxCode

The txCode and rxCode parameters select the preamble codes to use in the

transmitter and the receiver – these are generally both set to the same values.

For correct operation of the device, the selected preamble code should follow

the rules of IEEE 802.15.4-2015 [3] UWB with respect to which codes are

allowed in the particular channel and PRF configuration, this is shown in Table

2 below. The code will also define the PRF (pulse repetition frequency) used.

sfdType

The sfdType parameter enables the use of one of 4 possible SFD (Start Frame

Delimiter) sequences. The supported values are: 0 - short IEEE 8-bit standard,

1 - DW 8-bit, 2 - DW 16-bit, 3 - 4z BPRF) DW 8 and 16 bit sequences, which

Decawave has found to be more robust than that specified in the IEEE 802.15.4

standard, give improved performance.

dataRate
The dataRate parameter specifies the data rate to be one of 850kbps or

6800kbps, via symbolic definitions DWT_BR_850K and DWT_BR_6M8.

txPreambLength

The txPreambLength parameter specifies preamble length which has a range

of values given by symbolic definitions: DWT_PLEN_4096, DWT_PLEN_2048,

DWT_PLEN_1536, DWT_PLEN_1024, DWT_PLEN_512, DWT_PLEN_256,

DWT_PLEN_128, DWT_PLEN_64, DWT_PLEN_32. Table 3 gives recommended

preamble sequence lengths to use depending on the data rate.

rxPAC

The rxPAC parameter specifies the Preamble Acquisition Chunk size to use.

Allowed values are DWT_PAC8, DWT_PAC16, DWT_PAC32 or DWT_PAC4.

Table 4 below gives the recommended PAC size to use in the receiver

depending on the preamble length being used in the transmitter. PAC size is

specified in preamble symbols, which are approximately 1 µs each.

Note: The dwt_setsniffmode() and dwt_setpreambledetecttimeout() API

functions use PACs as the unit to specify the time the receiver is on looking for

preamble.

phrMode

The phrMode parameter selects between either the standard or extended PHR

mode is set, either DWT_PHRMODE_STD for standard length frames 5 to 127

octets long or non-standard DWT_PHRMODE_EXT allowing frames of length 5

to 1023 octets long.

phrRate
The phrRate parameter selects between either using the standard 850 kbps

rate for PHR symbols or using a higher rate – same as the data rate

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Fields Description of fields within the dwt_config_t structure

sfdTO

The sfdTO parameter sets the SFD timeout value. The purpose of the SFD

detection timeout is to recover from the occasional false preamble detection

events that may occur. By default, this value is 4096 + 64 + 1 symbols, which is

just longer the longest possible preamble and SFD sequence. This is the

maximum value that is sensible. When it is known that a shorter preamble is

being used then the value can be reduced appropriately. The function does

not allow a value of zero. (If a 0 value is selected the default value of 4161

symbols (DWT_SFDTOC_DEF) will be used). The recommended value is

preamble length + 1 + SFD length – PAC size.

stsMode
The stsMode parameter sets one of four possible STS modes: no STS, STS

before PHR, STS after data, or no data mode.

stsLength
The stsLength parameter specifies STS length. The API supports the lengths

defined by the dwt_sts_lengths_e.

pdoaMode

The pdoaMode parameter configures one of three possible PDOA modes: no

PDOA, mode 1 (PDOA is calculated between Ipatov POA and STS POA), mode

3 (PDOA is calculated between two STS blocks)

The dwt_configure() function does not error check the input parameters unless the

DWT_API_ERROR_CHECK code switch is defined. If this is defined, it will assert in case an error is

detected. It is up to the developer to ensure that the assert macro is correctly enabled in order to

trap any error conditions that arise. If DWT_API_ERROR_CHECK switch is not defined, error checks

are not performed.

NOTE: SFD timeout cannot be set to 0; if a zero value is passed into the function the default value will

be programmed. To minimise power consumption in the receiver, the SFD timeout of the receiving

device, sfdTO parameter, should be set according to the TX preamble length of the transmitting

device. As an example, if the transmitting device is using 128 preamble length, an SFD length of 8 and

a PAC size of 8, the corresponding receiver should have sfdTO parameter set to 129 (128 + 1 + 8 - 8).

Table 2: supported UWB channels and recommended preamble codes

Channel

number

Preamble Codes

(16 MHz PRF)

Preamble Codes

(64 MHz PRF)

Preamble Codes
(SCP)

5, 9 3, 4 9, 10, 11, 12 25, 26, 27, 28, 29

In addition to the preamble codes in shown in Table 2 above, for 64 MHz PRF there are eight additional

preamble codes, (13 to 16, and 21 to 24), available for use on all channels. These should only be

selected as part of implementing dynamic preamble selection (DPS). Please refer to the IEEE 802.15.4

standard [3] for more details of the dynamic preamble selection technique.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

The preamble sequence used on a particular channel is the same at all data rates, however its length,

(i.e. the number of symbol times for which it is repeated), has a significant effect on the operational

range. Table 3 gives some recommended preamble sequence lengths to use depending on the data

rate. In general, a longer preamble gives improved range performance and better first path time of

arrival information while a shorter preamble gives a shorter air time and saves power. When

operating a low data rate for long range, then a long preamble is needed to achieve that range. At

higher data rates the operating range is naturally shorter so there is no point in sending an overly long

preamble as it wastes time and power for no added range advantage.

Table 3: Recommended preamble lengths

Data Rate
Recommended preamble

sequence length

6.8Mbps 32, 64, 128 or 256

850kbps 256, or higher

The preamble sequence is detected by cross-correlating in chunks which are a number of preamble

symbols long. The size of chunk used is selected by the PAC size configuration, which should be

selected depending on the expected preamble size. A larger PAC size gives better performance when

the preamble is long enough to allow it. But if the PAC size is too large for the preamble length then

receiver performance will reduce or fail to work at the extremes – (e.g. a PAC of 32 will never receive

frames with just 32 preamble symbols). Table 4 below gives the recommended PAC size configuration

to use in the receiver depending on the preamble length being used in the transmitter.

Table 4: Recommended PAC size

Expected preamble
length of frames being

received
Data Rate

Recommended
PAC size

32 6.81 Mb/s 4

≥ 64 6.81 Mb/s 8

≥ 128 850 kb/s 16

Notes of STS modes:

This function configures the STS mode (defined in Table 5). When STS modes 1 or 2 are configured,

the IC will transmit a STS after the SFD (in Mode 1) or after data (in Mode 2). The STS PRF will match

the Ipatov. The API supports a number of STS length configurations as specified by dwt_sts_lengths_e.

Prior to transmission of STS, a 128-bit IV (initial value), via counter register, generates a 128-bit

“NONCE” value which with the 128-bit key value feeds into the CPRNG block (pseudo-random number

generator block) to generate codes for each pair of preamble symbols, see Figure 6. The supported

PRF is 64 MHz.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

A user is expected to either set a unique key and IV e.g. per ranging/communication session is started

between a number of devices, or keep the same key for some time but update the IV (e.g. the low x

bits) to keep session secure. Optionally Super Deterministic Codes can be used, this means that the

programming of STS key and IV is not necessary.

Table 5: stsMode parameter to dwt_configure() function

Mode Value Description

DWT_STS_MODE_OFF 0x0 The IC is not configured to use STS.

DWT_STS_MODE_1 0x1
The IC is configured to use STS mode 1, i.e. the STS comes
before data

DWT_STS_MODE_2 0x2
The IC is configured to use STS mode 2, i.e. the STS comes
after data

DWT_STS_MODE_SDC 0x8 The Super Deterministic Codes are used in the STS

DWT_STS_MODE_ND 0x3 Configured to use no data STS mode

The DW3720 supports four STS modes of operation, the packet format of each of these is shown in

Figure 5. When the STS modes are used then the IC will transmit a STS preamble, which is a pseudo-

random sequence of pulses. This pseudo-random sequence is based on AES128 in counter mode.

The host controller needs to provide the IC with a seed and Initial Value, which can be

(re)programmed individually (for this dwt_configurestskey() and dwt_configurestsiv() APIs are used).

Ipatov Preamble SFD PHR Data Payload

(a) Std IEEE 802.15.4 UWB packet structure

Ipatov Preamble SFD STS PHR Data Payload

(b) Mode 1 secure ranging packet structure

Ipatov Preamble SFD PHR Data Payload STS

(c) Mode 2 secure ranging packet structure

Ipatov Preamble SFD STS

(d) No data secure ranging packet structure

Figure 5: Standard compliant versus secure ranging packet

Assuming the seed is not changed, and the counter is not reset between packets (i.e. by loading a new

Initial Value), then a different set of STS symbols will be generated as a result of the natural

advancement of the counter. These will be applied to generate the STS that is either used for the

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

transmitted frames, or used in the receiver to correlate with the symbols of the STS in the received

frame. Over time the counter will generate 231 - separate 128-bit values before it repeats.

Figure 6: AES in counter mode based CPRNG

See also: dwt_setpllrxprebufen

int dwt_setpllrxprebufen(dwt_pll_prebuf_cfg_e pll_rx_prebuf_cfg);

This function enables/disables the PLL RX prebuffer (when the PLL is active).

Parameters:

Type Name Description

dwt_pdoa_mode_e pdoaMode New "PLL RX Prebuffer Enable" Configuration.

 typedef enum

 {

 DWT_PLL_RX_PREBUF_DISABLE = 0, //!< Disable the DW RX PLL Pre-Buffers

 DWT_PLL_RX_PREBUF_ENABLE, //!< Enable the DW RX PLL Pre-Buffers

 } dwt_pll_prebuf_cfg_e;

Return Parameters:

Type Description

int DWT_SUCCESS = 0: if successful.

DWT_ERROR = -1: upon error.

Notes:

To enable the RX Pre-buffers, this function should be called when the device is in IDLE_RC mode, before

calibrating the PLL. To disable the RX Pre-buffers, the PLL should be re-calibrate after, if no other parameters

have been changed.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Enabling the RX PLL Pre-buffers is recommended when using two standalone ICs to perform PDoA, it will

mitigate any phase ambiguity that may be observed, particularly in channel 5. This is not required and not

recommended when calculating PDoA with a single IC (standard PDoA usage with QM33 or DW3000, PDoA

mode 3 or PDoA mode 5), to avoid an increase in power consumption.

dwt_configuretxrf() for setting certain TX parameters and dwt_setpllrxprebufen() and

 dwt_setsniffmode() for setting certain RX (preamble hunt) operating mode.

5.2.2 dwt_restoreconfig

DEPRECATED: This function is now deprecated for new development. It will be removed in the

future. Use dwt_restore_common() and dwt_restore_txrx() instead.

int32_t dwt_restoreconfig(dwt_restore_type_e restore_mask)

This function needs to be called after device is woken up from DEEPSLEEP/SLEEP state, to restore the

configuration and calibration data which has not been automatically restored from AON.

Parameters:

Type Name Description

dwt_restore_type_e restore_mask

DWT_FAST_RESTORE is the fastest way to restore but

it will not set DGC values and will not perform either

PGF cal nor ADC cal.

DWT_STANDARD_RESTORE will perform PGF cal and

restore DGC values but will not perform ADC cal

unless specified by DWT_FORCE_ADCOFFSET_CAL.

ADC cal con only be done on DW3720-based chip.

Return Parameters:

DWT_SUCCESS or error (DWT_ERR_RX_CAL*) if PGF/ADC calibration returns an error.

Notes:

5.2.3 dwt_restore_common

void dwt_restore_common(void);

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This function needs to be called after device is woken up from DEEPSLEEP/SLEEP state, to restore the

configuration which has not been automatically restored from AON.

Parameters:

Return Parameters:

Notes:

5.2.4 dwt_restore_txrx

This function needs to be called after device is woken up from DEEPSLEEP/SLEEP state, and after

dwt_restore_common(). It restores the TX and RX configuration which has not been automatically

restored from AON. If no TX or RX is needed, this function does not need to be called. If only RX is

needed, use DWT_RESTORE_RX_ONLY_MODE in restore_mask. If only TX is needed, use

DWT_RESTORE_TX_ONLY_MODE in restore_mask. If both TX and RX are needed, use

DWT_RESTORE_TXRX_MODE in restore_mask. If ADC calibration is needed, use

DWT_FORCE_ADCOFFSET_CAL in restore_mask together with DWT_RESTORE_RX_ONLY_MODE or

DWT_RESTORE_TXRX_MODE.

Parameters:

Type Name Description

uint8_t restore_mask See dwt_restore_type_e below for more information.

Return Parameters:

DWT_SUCCESS for success, or DWT_ERR_PLL_LOCK if PLL not locked.

Notes:

Current guidelines recommend to force ADC cal only:

• After every 10 deg drop when temperature <= -10 C

• Once when temperature > -10 and < 20

• Once when temperature >= 20

typedef enum

{

int32_t dwt_restore_txrx(uint8_t restore_mask);

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

 DWT_FAST_RESTORE = 0U, /*!< @deprecated Do not use this flag in new design.

 Will be removed in the future. For faster wakeups, no

 calibration is done and DGC values are not updated.

 It should be used only if dwt_configure will be called

after wakeup. */

 DWT_STANDARD_RESTORE = 1U, /*!< @deprecated Do not use this flag in new design.

Will be removed in the future.

Should be the default restore method.

It restores ADC threshold values instead of

recalibrating. ADC cal can be requested with

DWT_FORCE_ADCOFFSET_CAL. PGF calibration is always

performed in this mode. */

 DWT_FORCE_ADCOFFSET_CAL = 2U, //!< Force ADC calibration. This is only used in

 DW3720

 DWT_RESTORE_RX_ONLY_MODE = 0x04U, //!< Restore RX only mode

 DWT_RESTORE_TX_ONLY_MODE = 0x08U, //!< Restore TX only mode

 DWT_RESTORE_TXRX_MODE = 0x0CU //!< Restore TX and RX mode

} dwt_restore_type_e;

5.2.5 dwt_setplenfine

int32_t dwt_setplenfine (uint16_t preambleLength);

This API function is used to configure frame preamble length, the frame preamble length can be

configured in steps of 8, from 16 to 2048 symbols. If a non-zero value is configured, then the

TXPSR_PE setting is ignored.

Parameters:

Type Name Description

uint16_t preambleLength

Units are 8-symbol blocks, value of 1 is a minimum i.e. 16

symbols, value of 255 is max i.e. 2048 symbols.

Value of 0 disables this setting.

Return Parameters:

Type Description

int32_t DWT_SUCCESS if value is valid, DWT_ERROR otherwise

Notes:

5.2.6 dwt_setpllrxprebufen

int dwt_setpllrxprebufen(dwt_pll_prebuf_cfg_e pll_rx_prebuf_cfg);

This function enables/disables the PLL RX prebuffer (when the PLL is active).

Parameters:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Type Name Description

dwt_pdoa_mode_e pdoaMode New "PLL RX Prebuffer Enable" Configuration.

 typedef enum

 {

 DWT_PLL_RX_PREBUF_DISABLE = 0, //!< Disable the DW RX PLL Pre-Buffers

 DWT_PLL_RX_PREBUF_ENABLE, //!< Enable the DW RX PLL Pre-Buffers

 } dwt_pll_prebuf_cfg_e;

Return Parameters:

Type Description

int DWT_SUCCESS = 0: if successful.

DWT_ERROR = -1: upon error.

Notes:

To enable the RX Pre-buffers, this function should be called when the device is in IDLE_RC mode, before

calibrating the PLL. To disable the RX Pre-buffers, the PLL should be re-calibrate after, if no other parameters

have been changed.

Enabling the RX PLL Pre-buffers is recommended when using two standalone ICs to perform PDoA, it will

mitigate any phase ambiguity that may be observed, particularly in channel 5. This is not required and not

recommended when calculating PDoA with a single IC (standard PDoA usage with QM33 or DW3000, PDoA

mode 3 or PDoA mode 5), to avoid an increase in power consumption.

5.2.7 dwt_configuretxrf

void dwt_configuretxrf(dwt_txconfig_t *config);

The dwt_configuretxrf function is responsible for setting up the transmit RF configuration

parameters. The values present in the input structure are pulse generator delay (PGdly), transmit

output power (power) and pulse generator count (PGcount). The pulse generator delay value sets

the width of transmitted pulses effectively setting the output bandwidth. Transmit output power

setting assigns a power level to the outputted transmissions. The pulse generator count is a

measurement of the pulse generator delay lines – it allows for the calibration of pulse generator

delay.

The pulse generator uses delay lines to generate the pulses for the UWB signal. The length of these

delay lines determines the length of the pulse (and thus, inversely, the bandwidth of the spectrum).

These delay lines are analog (in the sense that they vary across device and temperature). The

PGDelay sets the length of the lines to explicitly set the delay.

Parameters:

Type Name Description

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

dwt_txconfig_t* config This is a pointer to the TX parameters configuration structure, which

contains the device configuration data. Individual fields are

described in detail below.

typedef struct

{

 uint8_t PGdly; //Pulse generator delay value

 uint32_t power; //the TX power – 4 bytes

 uint16_t PGcount; //Pulse generator count value

} dwt_txconfig_t ;

Return Parameters:

none

Notes:

This function can be called any time and it will configure the IC’s TX spectrum parameters. The config

parameter points to a dwt_txconfig_t structure (shown above) with fields to configure the pulse

generator delay (PGdly), TX power (power), and pulse generator count (PGCount). Recommended

values for PGdly are given in Table 6 below. (this may be called to adjust power and bandwidth as

temperature fluctuates)

Table 6: PGdly recommended values

TX Channel recommended PGdly value

5 0x34

9 0x34

Table 7: TX power recommended values

TX Channel recommended TX power value

5 0xfdfdfdfd

9 0xfefefefe

Table 8: dwt_txconfig_t parameter: power function

power

byte index

Byte name Function

0 DATA_PWR Power level applied during the
transmission of the data portion of

the frame

1 PHR_PWR Power level applied during the
transmission of the PHR portion of

the frame

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

power

byte index

Byte name Function

2 SHR_PWR Power level applied during the
transmission of the preamble and

SFD portions of the frame

3 STS_PWR Power level applied during the
transmission of the STS preamble

portion of the frame

Table 7 above gives the recommended TX power settings. The use of the individual octet values of the

4-byte TX power array are specified in Table 8, for further details of the power values please refer to

the User Manual [2].

NB: The values in Table 7 have been chosen to suit Decawave’s evaluation boards. For other

hardware designs the values here may need to be changed as part of the transmit power calibration

activity, and there is a location in OTP memory where the calibrated values can be stored and then

read and programmed from the application code. Please consult with Decawave’s applications

support team for details of transmit power calibration procedures and considerations.

5.2.8 dwt_adjust_tx_power

int dwt_adjust_tx_power(uint16_t boost, uint32_t ref_tx_power, uint8_t channel, uint32_t*
adj_tx_power, uint16_t* applied_boost);

This function calculates a new TX power setting (adj_tx_power) relative to a reference TX power setting

(ref_tx_power) and a boost to apply on top on this reference setting. The function finds the best possible

adjustment that can be made to give the closest solution (power value) corresponding to the required boost.

The boost which is applied is provided through applied_boost parameter. The setting calculation depends on

the operating channel (channel).

This function is typically used to take benefit from the additional TX power than can be transmitted for shorter

frames (gating gain).

Parameters:

Type Name Description

uint16_t boost The amount of boost in 0.1dB step to be applied on top of the

reference TX power setting.

uint32_t ref_tx_power The reference TX power setting.

uint8_t channel The channel for which the calculation must be performed.

uint32_t adj_tx_power The adjusted TX power setting.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

uint16_t applied_boost The amount of boost in 0.1dB step that was effectively applied

by the API on top of the reference TX power setting.

Return Parameters:

Type Description

int DWT_SUCCESS = 0: if an adjusted TX power setting could be calculated.

DWT_ERROR = -1: if the API could not calculate a valid adjusted TX power setting.

Notes:

Example:

Theoretical boost between 1000us and 250us is 6dB (Boost = 10*log10(ref_duration/fr_duration))

Input:

reference_tx_power: 0x4a4a4a4a // Setting for 1000s frame to comply with regulation

boost = 60 // 6dB in 0.1dB steps

channel = 9

Output:

adj_tx_power: 0x9a9a9a9a// Setting for 250s frame to comply with regulation

applied_boost: 58 //Actual boost that was applied is 5.8dB

The setting 0x9a9a9a9a should be use to transmit a 250us frame in channel 9 and comply with

regulations.

5.2.9 dwt_calculate_linear_tx_power

int32_t dwt_calculate_linear_tx_power (int channel, power_indexes_t *p_indexes, tx_adj_res_t
*p_res)

This function calculates a new TX power configuration (p_res) relative to an input power index value

(p_indexes). The input power indexes correspond to a decrement in 0.25dB step relative to the maximum

output power.

For example:

• The index 0 will return a configuration corresponding to the maximum output power.

• The index 1 will return a configuration corresponding to the maximum output power – 1*0.25dB.

• The index 20 will return a configuration corresponding to the maximum output power – 20*0.25db.

The input power_index_t type allows to configure an independent index value for each section of a frame:

PSDU, PHR, SHR, STS.

The returned configuration depends on the operating channel for transmission (channel).

The returned configuration is a combination of tx_power setting and pll_common register setting. Those

parameters can be configured through the usage of the APIs dwt_setpllbiastrim and dwt_setpllrxprebufen.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This function is typically used to take benefit from the additional TX power than can be transmitted for shorter

frames (gating gain).

Parameters:

Type Name Description

int channel Channel used for transmission for which tx power is

calculated.

power_indexes_t* p_indexes The input member allows to control the required output

power. There is one input index for each section of a frame

(PSDU, PHR, SHR, STS). Indexes are provided in 0.25dB

decrement relative to the maximum output power.

The output member returns the index that was applied by

the API. This may differ from the input power in two cases:

1. The minimum output power was reached, and then the

maximum index value is returned.

2. There was a conflict between input indexes required for

two or more section of a frame. For example, it is not

possible to request the maximum power for section PSDU

and minimum power for section PHR. This is because

different index may map different pll_common register

setting, and this cannot me modified during the transmission

of a frame. In case of conflict, the priority is given to the

highest power, and the applied index will correspond to the

closest solution while ensure index is matched for the

highest required power.

tx_adj_res_t* p_res The tx power configuration that will correspond to the input

tx power indexes. This is a combination of a tx power setting

value and a pll_common register value.

typedef enum

{

 DWT_DATA_INDEX = 0,

 DWT_PHR_INDEX = 1,

 DWT_SHR_INDEX = 2,

 DWT_STS_INDEX = 3,

 DWT_MAX_POWER_INDEX = 4

} dwt_power_indexes_e;

typedef struct {

 uint8_t input[DWT_MAX_POWER_INDEX];

 uint8_t output[DWT_MAX_POWER_INDEX];

} power_indexes_t;

typedef struct

{

 uint32_t tx_power_setting;

 uint8_t pll_bias;

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

} tx_adj_cfg_t;

Return Parameters:

Type Description

int DWT_SUCCESS = 0: if a TX power configuration could be calculated.

DWT_ERROR = -1: if the API could not calculate a valid TX power configuration.

5.2.10 dwt_setpllbiastrim

void dwt_ setpllbiastrim(uint8_t pll_bias_trim)

This function will set the pll bias trim value in PLL_COMMON register. This is useful

 for applying the adjusted TX power configuration returned by dwt_calculate_linear_tx_power().

Parameters:

Type Name Description

uint8_t pll_bias_trim
PLL bias trim configuration to be written to register

PLL_COMMON_ID

Return Parameters:

none

Notes:

5.2.11 dwt_setrxantennadelay

void dwt_setrxantennadelay(uint16_t antennaDly);

This function sets the RX antenna delay. The antennaDelay value passed is programmed into the RX

antenna delay register. This needs to be set so that the RX timestamp is correctly adjusted to

account for the time delay between the antenna and the internal digital RX timestamp event. This is

determined by a calibration activity. Please consult with Decawave applications support team for

details of antenna delay calibration procedures and considerations.

Parameters:

Type Name Description

uint16_t antennaDly The delay value is in DWT_TIME_UNITS (15.65 picoseconds ticks)

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Return Parameters:

none

Notes:

This function is used to program the RX antenna delay.

5.2.12 dwt_getrxantennadelay

uint16_t dwt_getrxantennadelay(void);

This function returns the RX antenna delay, the value programmed into the RX antenna delay

register.

Parameters:

 none

Return Parameters:

Type Description

uint16_t RX antenna delay value as currently set in RX antenna delay register.

Notes:

This function is used to read the RX antenna delay programmed in the device.

5.2.13 dwt_settxantennadelay

void dwt_gettxantennadelay(uint16_t antennaDly);

This function returns the TX antenna delay, the value programmed into the TX antenna delay

register.

Parameters:

Type Name Description

uint16_t antennaDly The delay value is in DWT_TIME_UNITS (15.65 picoseconds ticks)

Return Parameters:

none

Notes:

This function is used to program the TX antenna delay.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.2.14 dwt_gettxantennadelay

uint16_t dwt_gettxantennadelay(void);

This function sets the TX antenna delay. The antennaDelay value passed is programmed into the TX

antenna delay register. This needs to be set so that the TX timestamp is correctly adjusted to

account for the time delay between internal digital TX timestamp event and the signal actually

leaving the antenna. This is determined by a calibration activity. Please consult with Decawave

applications support team for details of antenna delay calibration procedures and considerations.

Parameters:

none

Return Parameters:

Type Description

uint16_t TX antenna delay value as currently set in TX antenna delay register.

Notes:

This function is used to read the TX antenna delay programmed in the device .

5.2.15 dwt_setpdoaoffset

void dwt_setpdoaoffset(uint16_t offset);

This function sets PDoA offset, the PDoA result (dwt_readpdoa()) will have this offset applied.

Parameters:

Type Name Description

uint16_t offset The delay value is in DWT_TIME_UNITS (15.65 picoseconds ticks)

Return Parameters:

none

Notes:

5.2.16 dwt_readpdoaoffset

uint16_t dwt_readpdoaoffset(void);

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This function reads PDoA offset as is currently set in the device. The values is in DWT_TIME_UNITS

(15.65 picoseconds ticks).

Parameters:

none

Return Parameters:

Type Description

uint16_t PDoA offset value.

Notes:

5.2.17 dwt_configurestskey

void dwt_configurestskey (dwt_sts_cp_key_t* pStsKey);

This function can be used to configure the STS 128-bit AES key value. The default value is [31:0]

C9A375FA, [63:32] 8DF43A20, [95:64] B5E5A4ED, [127:96] 0738123B

Parameters:

Type Name Description

dwt_sts_cp_key_t*
pStsKey

Pointer to the structure of dwt_sts_cp_iv_t type

containing the 128-bit AES key for STS, (i.e. 16 bytes, LSB

comes first – to write default value in: pStsKey [0] would

be 0xFA, pStsKey [1] would be 0x75, etc.)

typedef struct

{

 uint32_t key0;

 uint32_t key1;

 uint32_t key2;

 uint32_t key3;

} dwt_ata_cp_key_t;

Return Parameters:

none

Notes:

5.2.18 dwt_configurestsiv

void dwt_configurestsiv (dwt_sts_cp_iv_t* pStsIv);

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This function is used to configure the STS 128-bit initial value. The default value is 1, i.e. the IC reset

value is 1. A value of all 0 is invalid and the IC will automatically detect this condition and set it to 1.

Parameters:

Type Name Description

dwt_sts_cp_iv_t* pStsIv

Pointer to the structure of dwt_sts_cp_iv_t type

containing the 128-bit initial value for STS. (i.e.

16 bytes, LSB comes first)

typedef struct

{

 uint32_t iv0;

 uint32_t iv1;

 uint32_t iv2;

 uint32_t iv3;

} dwt_sts_cp_iv_t;

Return Parameters:

none

Notes:

In order to make the counter more random its initial state (IV) is seeded from time to time (updating

frequency should be less than its period). For security reasons the key should also be updated at the

same time (with a different value).

The values it generates act as a nonce which together with the supplied key are used to generate the

STS.

5.2.19 dwt_configurestsloadiv

void dwt_configurestsloadiv (void);

This function is used to load the IV and KEY initial value into the STS AES block.

Parameters:

none

Return Parameters:

none

Notes:

If this function is called when reloading the counter with a previously set IV, without changing the key,

then the generated STS sequence will potentially be repeating in a predictable way. While this may

be useful in some testing scenarios, it could be a security risk if it were done in normal operation,

where any reloading of the counter should be accompanied by a new key load also.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.2.20 dwt_configurestsmode

void dwt_configurestsmode(uint8_t stsMode);

This function configures STS mode (e.g. DWT_STS_MODE_OFF, DWT_STS_MODE_1, etc.) The

dwt_configure() should be called prior to this to configure other parameters.

Parameters:

Type Name Description

uint8_t stsMode The STS mode that the device should be configured for.

Return Parameters:

none

Notes:

For more information on the input parameter, please see Table 5: stsMode parameter to

dwt_configure() function.

5.2.21 dwt_configuresfdtype

void dwt_configuresfdtype(dwt_sfd_type_e sfdType);

This function configures SFD type only: e.g. IEEE 4a - 8, DW-8, DW-16, or IEEE 4z -8 (binary). The

dwt_configure() should be called prior to this to configure other parameters.

Parameters:

Type Name Description

dwt_sfd_type_e sfdType
This value is used to assign the SFD type used when configuring

the device. Please see Table 9 for more information.

Table 9: sfdType parameter type dwt_sfd_type_e to dwt_configuresfdtype() function

Mode Value Description

DWT_SFD_IEEE_4A 0x0 IEEE 8-bit ternary

DWT_SFD_DW_8 0x1 Decawave / Qorvo 8-bit SFD

DWT_SFD_DW_16 0x2 Decawave / Qorvo 16-bit SFD

DWT_SFD_IEEE_4Z 0x3 IEEE 8-bit binary (4z)

DWT_SFD_LEN8 0x8 IEEE, and DW 8-bit are length 8

DWT_SFD_LEN16 0x10 DW 16-bit is length 16

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

typedef enum

 {

 DWT_SFD_IEEE_4A = 0, //!< IEEE 8-bit ternary

 DWT_SFD_DW_8 = 1, //!< DW 8-bit

 DWT_SFD_DW_16 = 2, //!< DW 16-bit

 DWT_SFD_IEEE_4Z = 3, //!< IEEE 8-bit binary (4z)

 DWT_SFD_LEN8 = 8, //!< IEEE, and DW 8-bit are length 8

 DWT_SFD_LEN16 = 16, //!< DW 16-bit is length 16

 } dwt_sfd_type_e;

Return Parameters:

none

5.2.22 dwt_setleds

void dwt_setleds(uint8_t mode);

This is used to set up Tx/Rx GPIOs which are then used to control (for example) LEDs. This is not

completely IC dependent; it requires that LEDs are connected to the GPIO lines.

Parameters:

Type Name Description

uint8_t mode

This is a bit field value interpreted as follows:

- bit 0: set to 1 to enable LEDs, 0 to disable them.

- bit 1: set to 1 to make LEDs blink once on init. This is only

valid if bit 0 is set (enable LEDs).

- Bits 2 to 7: Reserved.

Return Parameters:

none

Notes:

For more information on GPIO control and configuration please consult the User Manual [2] and Data

Sheet [1].

5.2.23 dwt_setlnapamode

void dwt_setlnapamode(int lna_pa)

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This is used to enable GPIO for external LNA or PA functionality – HW dependent, consult the User

Manual [2]. This can also be used for debug as enabling TX and RX GPIOs is can help monitoring the

IC's activity.

Parameters:

Type Name Description

int lna_pa

This parameter is treated as a bit field.

If bit 0 is set (DWT_LNA_ENABLE), it will enable LNA

functionality.

If bit 1 is set (DWT_PA_ENABLE), it will enable PA functionality.

If bit 2 is set (DWT_TXRX_EN), it will enable RX/TX sampling on

GPIOs 0 & 1.

To disable LNA/PA functionality, set bits 0 and 1 to 0.

Return Parameters:

none

Notes:

Enabling PA functionality requires that fine grain TX sequencing is deactivated. This can be done using

the dwt_setfinegraintxseq() API function.

For more information on GPIO control and configuration please consult the User Manual [2] and Data

Sheet [1].

5.2.24 dwt_generatecrc8

uint8_t dwt_generatecrc8 (const uint8_t* byteArray, int len, uint8_t crcRemainderInit);

This function is used to generate 8-bit CRC to send as part of SPI write transaction when the IC is

configured for SPI CRC check mode.

Parameters:

Type Name Description

uint8_t* byteArray This array supplies the bytes for which to calculate the CRC.

int len Length of the byteArray parameter in bytes

uint8_t crcRemainderInit
The remainder is the CRC, also it is initially set to the

initialisation value for CRC calculation.

Return Parameters:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Type Description

uint8_t The calculated 8-bit CRC function.

Notes:

It is possible to calculate CRC for two separate blocks (that will be sent as one contiguous SPI

transaction) by calling the dwt_generatecrc8() function twice, once for each; setting the first

crcRemainderInit parameter to the configured CRC seed (zero by default), and the second

crcRemainderInit parameter to the CRC value returned from the first call to the dwt_generatecrc8()

function.

5.2.25 dwt_enablespicrccheck

void dwt_enablespicrccheck (dwt_spi_crc_mode_e crc_mode, dwt_spierrcb_t spireaderr_cb);

This function can be used to enable or disable the SPI CRC check in the IC.

Parameters:

Type Name Description

dwt_spi_crc_mode_e crc_mode

If set to DWT_SPI_CRC_MODE_WR then SPI CRC

checking will be performed in DW3720 on each

SPI write. The last byte of the SPI write

transaction needs to be the 8-bit CRC, if it does

not match the one calculated by DW3720 SPI, a

CRC ERROR event will be set in the status register

(SPICRC bit of SYS_STATUS_LO register).

dwt_spierrcb_t spireaderr_cb

This parameter needs to contain the callback

function pointer which will be called when a SPI

read error is detected (when the DW3720

generated CRC does not match the one

calculated by dwt_generatecrc8 following the SPI

read transaction).

Return Parameters:

none

Notes:

The crc_mode parameter is used to select the CRC mode to be used. The following table shows all the

available options in the dwt_spi_crc_mode_e enum that is used to contain the argument:

Table 10: Valid crc_mode options

Parameter Value Description

DWT_SPI_CRC_MODE_NO 0 No CRC

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Parameter Value Description

DWT_SPI_CRC_MODE_WR 1 Enable SPI CRC check on write
functions.

DWT_SPI_CRC_MODE_WRRD 2 Enable SPI CRC on both write and
read operations.

During normal SPI mode the SPICRC bit of the SYS_STATUS_LO register will be asserted. When using

SPI CRC check mode this will only be asserted if there is a mismatch between the CRC byte calculated

by the IC and the one sent in the SPI write transaction.

5.2.26 dwt_configmrxlut

void dwt_configmrxlut(int channel);

This function sets the default values of the lookup tables depending on the channel selected.

Parameters:

Type Name Description

int channel This is the channel: 5 or 9.

Return Parameters:

none

Notes:

The lookup table contains the desired front-end settings for the chosen level of noise dithering.

Different settings will apply for channel 5 or channel 9. The seven registers starting at

DGC_DGC_LUT_0_CFG and ending at DGC_DGC_LUT_6_CFG are populated as follows depending on

the channel given:

Table 11: Channel 5 Lookup Table Configuration for DW3xxx devices

LUT #
DW3000 – LUT
register values

DW3720 – LUT
register values

CH5_DGC_LUT_0 0x1C0FD 0x3803E

CH5_DGC_LUT_1 0x1C43E 0x3876E

CH5_DGC_LUT_2 0x1C6BE 0x397FE

CH5_DGC_LUT_3 0x1C77E 0x38E6E

CH5_DGC_LUT_4 0x1CF36 0x39C7E

CH5_DGC_LUT_5 0x1CFB5 0x39DFE

CH5_DGC_LUT_6 0x1CFF5 0x39FF6

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Table 12: Channel 9 Lookup Table Configuration for DW3xxx devices

LUT #
DW3000 – LUT
register values

DW3720 – LUT
register values

CH9_DGC_LUT_0 0x2A8FE 0x5407E

CH9_DGC_LUT_1 0x2AC36 0x547BE

CH9_DGC_LUT_2 0x2A5FE 0x54D36

CH9_DGC_LUT_3 0x2AF3E 0x55E36

CH9_DGC_LUT_4 0x2AF7D 0x55F36

CH9_DGC_LUT_5 0x2AFF5 0x55DF6

CH9_DGC_LUT_6 0x2AFB5 0x55FFE

5.2.27 dwt_enablegpioclocks

void dwt_enablegpioclocks(void);

This function enables the GPIO clocks on the IC. GPIO clocks are required to ensure correct GPIO

operation.

Parameters:

none

Return Parameters:

none

Notes:

An example of how this API can be used is included the API package [5]. Also, please see Example

13a: Use of DW3XXX GPIO lines.

5.2.28 dwt_setgpiomode

void dwt_setgpiomode(uint32_t gpio_mask, uint32_t gpio_modes);

This function is used to configure the GPIO mode of one or more GPIO pins. The gpio_mask

parameter allows to only configure the mode of specific pins, without altering the mode of other

pins.

Parameters:

Type Name Description

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

uint32_t gpio_mask
The mask of the GPIOs to change the mode of. Typically built

from dwt_gpio_mask_e values.

uint32_t gpio_modes
The GPIO modes to set. Typically built from dwt_gpio_pin_e

values.

Return Parameters:

none

Notes:

An example of how this API can be used is included the API package [5]. Also, please see Example

13a: Use of DW3XXX GPIO lines.

5.2.29 dwt_setgpiodir

void dwt_setgpiodir(uint16_t in_out);

This is used to configure the GPIOs as inputs or outputs, default is input == 1.

Parameters:

Type Name Description

uint16_t in_out
if corresponding GPIO bit is set to 1 then it is input, otherwise

it is output GPIO 0 = bit 0, GPIO 1 = bit 1 etc...

Return Parameters:

none

Notes:

An example of how this API can be used is included the API package [5]. Also, please see Example

13a: Use of DW3XXX GPIO lines.

5.2.30 dwt_getgpiodir

void dwt_getgpiodir(uint16_t* in_out);

This is used to read the current GPIO configuration. All GPIOs are set to input (i.e. 1) by default.

Parameters:

Type Name Description

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

uint16_t* in_out

Will return the current GPIO configuration, if GPIO is an input

the bit will be set to 1, otherwise 0 means the GPIO is

configured as an output, GPIO 0 = bit 0, GPIO 1 = bit 1 etc..

Return Parameters:

none

Notes:

On the DW3000 the GPIO5 and GPIO6 direction is reversed, 1 = output, 0 = input.

5.2.31 dwt_setgpiovalue

void dwt_setgpiovalue(uint16_t gpio, int_t value);

This is used to set output value on GPIOs that have been configured for output via dwt_setgpiodir()

API

Parameters:

Type Name Description

uint16_t gpio Should be one or multiple of dwt_gpio_mask_e values

int_t value
This parameter is used as a mask for setting the signal level

for any GPIO pins that have been previously set as outputs.

Return Parameters:

none

Notes:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.2.32 dwt_pgf_cal

int dwt_pgf_cal(int ldoen);

This function sets up the PGF calibration and then calls dwt_run_pgfcal() to run the calibration. This

is needed prior to reception of any frames/packets.

Parameters:

Type Name Description

int ldoen

This signifies whether the PGF LDOs should be enabled when

running the function. A ‘1’ signifies that PGF LDOs will be

turned on and a ‘0’ signifies that they will not be turned on.

Return Parameters:

Type Description

int Return values can be either DWT_SUCCESS = 0 or an error: DWT_ERR_RX_CAL_PGF (-

3), DWT_ERR_RX_CAL_RESI (-4) or DWT_ERR_RX_CAL_RESQ (-5). Depending what is

returned from dwt_run_pgfcal().

Notes:

This function is run as part of the final step of dwt_configure().

5.2.33 dwt_run_pgfcal

int dwt_run_pgfcal(void);

This function runs the PGF calibration. It is usually called by dwt_pgf_cal(). This is needed prior to

reception of any frames/packets.

Parameters:

none

Return Parameters:

Type Description

int Return values can be either DWT_SUCCESS = 0 or an error: DWT_ERR_RX_CAL_PGF (-

3), DWT_ERR_RX_CAL_RESI (-4) or DWT_ERR_RX_CAL_RESQ (-5).

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Notes:

5.2.34 dwt_pll_cal

int dwt_pll_cal(void);

This function will be used to recalibrate and relock the PLL. If the cal/lock is successful

DWT_SUCCESS will be returned otherwise DWT_ERROR will be returned.

Parameters:

none

Return Parameters:

Type Description

int An int value will be returned to indicate is the recalibration and

relocking of the PLL was successful or not. DWT_SUCCESS

indicates a success DWT_ERROR indicates a failure.

5.2.35 dwt_setdwstate

int dwt_setdwstate(int state);

This function can place DW3xxx into IDLE/IDLE_PLL or IDLE_RC mode when it is not actively in TX or

RX.

Parameters:

Type Name Description

int state

DWT_DW_IDLE (1) to put DW3720 into IDLE/IDLE_PLL state.

DWT_DW_INIT (0) to put DW3720 into INIT_RC state.

DWT_DE_IDLE_RC (2) to put DW3720 into IDLE_RC state

Return Parameters:

DWT_SUCCESS for success, or DWT_ERROR for error

Notes:

5.2.36 dwt_enable_disable_eq

void dwt_enable_disable_eq(uint8_t en);

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This function enables or disables the equaliser block within in the CIA block within the DW37XX. The

equaliser should be used when receiving from devices which transmit using a Symmetric Root Raised

Cosine pulse shape. The equaliser will adjust the CIR to give improved receive timestamp results.

Normally, this is left disabled (the default value), which gives the best receive timestamp

performance when interworking with devices (like this IC) that use the IEEE 802.15.4z recommended

minimum precursor pulse shape.

Parameters:

Type Name Description

uint8_t en
DWT_EQ_ENABLED (1): Enable the equalizer block.

DWT_EQ_DISABLED (0): Disable the equalizer block.

Return Parameters:

none

Notes:

5.2.37 dwt_configure_rf_port

void dwt_configure_rf_port(dwt_rf_port_ctrl_e port_control);

This function is used to control which RF port is currently enabled.

Parameters:

Type Name Description

dwt_rf_port_ctrl_e port_control
Enum value for enabling or disabling manual control

and primary antenna

typedef enum

{

 DWT_RF_PORT_MANUAL_DISABLED = 0UL,

 /* Force RF Port 1. PDoA is not possible in that mode. */

 DWT_RF_PORT_MANUAL_1 = 1UL,

 /* Force RF Port 2. PDoA is not possible in that mode. */

 DWT_RF_PORT_MANUAL_2 = 2UL,

 /* The RF port is automatically switched depending on PDoA mode,

 starting by RF Port 1. */

 DWT_RF_PORT_AUTO_1_2 = 3UL,

 /* The RF port is automatically switched depending on PDoA mode,

 starting by RF Port 2. */

 DWT_RF_PORT_AUTO_2_1 = 4UL,

} dwt_rf_port_ctrl_e;

Return Parameters:

none

Notes:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.2.38 dwt_configure_and_set_antenna_selection_gpio

void dwt_configure_and_set_antenna_selection_gpio(uint8_t antenna_config);

This function is used for specific customer hardware/modules where antenna selection switch is

connected to GPIO6 and GPIO7. This function configures the GPIOs to give particular antenna

selecton.

Parameters:

Type Name Description

uint8_t antenna_config

Configure GPIO 6 and or 7 to use for antenna selection with

expected value. The parameter is a bit mask:

 Bit 0: Use GPIO 6

 Bit 1: Value to apply (0/1)

 Bit 2: Use GPIO 7

 Bit 3: Value to apply (0/1)

Return Parameters:

none

Notes:

5.2.39 dwt_wifi_coex_set

void dwt_wifi_coex_set(dwt_wifi_coex_e enable, int coex_io_swap);

This function can set GPIO output to high (1) or low (0) which can then be used to signal e.g. WiFi

chip to turn off or on. This can be used in devices with multiple radios to minimise co-existence

interference.

Parameters:

Type Name Description

dwt_wifi_coex_e enable

This argument will specify if the user wishes to enable or

disable WiFi co-existence functionality on GPIO5 or GPIO 4

(depending on how the coex_io_swap argument is set).

• “DWT_EN_WIFI_COEX” - Configure GPIO for WiFi

co-ex - GPIO high.

• “DWT_DIS_WIFI_COEX” - Configure GPIO for WiFi

co-ex - GPIO low.

int coex_io_swap

This argument specifies which GPIO to use for WiFi co-ex:

• ‘0’ – GPIO5.

• ‘1’ – GPIO4.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

typedef enum

{

 DWT_EN_WIFI_COEX=0, /* Configure GPIO for WiFi co-ex - GPIO high*/

 DWT_DIS_WIFI_COEX /* Configure GPIO for WiFi co-ex - GPIO low */

}dwt_wifi_coex_e;

Return Parameters:

none

Notes:

5.2.40 dwt_set_fixedsts

void dwt_set_fixedsts(uint8_t set)

This API enables "Fixed STS" function. The fixed STS function means that the same STS will be sent in

each packet. And also in the receiver, each time the receiver is enabled, the STS will be reset. Thus,

transmitter and the receiver will be in sync.

Parameters:

Type Name Description

uint8_t set Set to 1 to set FIXED STS mode and 0 to

disable (normal mode, STS counter will

increment)

Return Parameters:

none

5.2.41 dwt_set_alternative_pulse_shape

void dwt_set_alternative_pulse_shape(uint8_t set_alternate)

This API sets the Alternative Pulse Shape according to Japanese Association of Radio Industries and

Businesses Standard-T91. [7] This is only supported in DW3720 (E0) silicon, which allows the use of 2

different TX pulse shapes. The new pulse shape was specifically designed to meet the Japanese ARIB

on channel 9.

Parameters:

Type Name Description

uint8_t set_alternate Set to 1 to enable the alternate pulse shape

and 0 to restore default shape.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Return Parameters:

none

Notes:

Below is the image for the usual pulse shape grey colour and alternate pulse shape according to ARIB STD-T91

in blue colour, fitting inside the limits of standard.

5.2.42 dwt_config_ostr_mode

void dwt_config_ostr_mode (uint8_t enable, uint16_t wait_time)

This function is used to configure the device for OSTR mode (One Shot Timebase Reset mode), this

will prime the device to reset the internal system time counter on SYNC pulse / SYNC pin toggle. For

more information on this operation please consult the device User Manual [2].

Parameters:

Type Name Description

uint8_t set_alternate Set to 1 to enable OSTR mode and 0 to

disable.

uint16_t wait_time When a counter running on the 38.4 MHz

external clock and initiated on the rising

edge of the SYNC signal equals the WAIT

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

programmed value, the DW3xxx timebase

counter will be reset.

Return Parameters:

none

Notes:

At the time the SYNC signal is asserted, the clock PLL dividers generating the DW3720 125 MHz

system clock are reset, to ensure that a deterministic phase relationship exists between the system

clock and the asynchronous 38.4 MHz external clock. For this reason, the WAIT value programmed

will dictate the phase relationship and should be chosen to give the desired phase relationship, as

given by WAIT modulo 4. A WAIT value of 33 decimal is recommended, but if a different value is

chosen it should be chosen so that WAIT modulo 4 is equal to 1, i.e. 29, 37, and so on.

5.2.43 dwt_setchannel

int dwt_setchannel(dwt_pll_ch_type_e ch);

This function allows to directly set the active channel for Tx or Rx operation.

Parameters:

Type Name Description

dwt_pll_ch_type_e ch
The channel to be set.

Supports channel 5 or 9.

typedef enum

{

 DWT_CH5 = 5, //!< Ch 5 configuration with PLL using 38.4 MHz crystal

 DWT_CH9 = 9, //!< Ch 9 configuration with PLL using 38.4 MHz crystal

} dwt_pll_ch_type_e;

Return Parameters:

Type Description

int DWT_SUCCESS = 0: if successful.

DWT_ERROR = -1: upon error.

Notes:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.2.44 dwt_setstslength

void dwt_setstslength(uint8_t stsblocks)

This function will set the stslength in amount of stsblocks. A block unit is 8us. The minimum value is

0 and will set a block of 8ns. The maximum value is 255 and will set a block of 2048us.

Parameters:

Type Name Description

Uint8_t stsblocks
Number of sts blocks to be configured. The block unit is

8us.

Return Parameters:

none

Notes:

5.2.45 dwt_configtxrxfcs

void dwt_configtxrxfcs(uint8_t enable)

This is used to enable/disable the FCS generation in transmitter and checking in receiver.

Parameters:

Type Name Description

uint8_t enable
This is used to enable/disable FCS generation in TX and

check in RX output parameters

typedef enum {

 DWT_FCS_ENABLE = 0x0, // default mode - enable FCS generation

 // in the tx and check in rx

 DWT_FCS_TX_OFF = 0x1, // disable FCS generation in the transmitter

 DWT_FCS_RX_OFF = 0x2 // disable FCS checking in the receiver

 } dwt_fcs_mode_e;

Return Parameters:

none

Notes:

5.2.46 dwt_setphr

int dwt_setphr(dwt_phr_mode_e phrMode, dwt_phr_rate_e phrRate)

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This function allows to configure the active PHR Mode and PHR rate.

Parameters:

Type Name Description

dwt_phr_mode_e phrMode PHR mode to be set. See below for supported values.

dwt_phr_rate_e phrRate PHR rate to be set. See below for supported values.

typedef enum

{

 DWT_PHRMODE_STD = 0x0, // standard PHR mode

 DWT_PHRMODE_EXT = 0x1, // DW proprietary extended frames PHR mode

} dwt_phr_mode_e;

typedef enum

{

 DWT_PHRRATE_STD = 0x0, // standard PHR rate

 DWT_PHRRATE_DTA = 0x1, // PHR at data rate (6M81)

} dwt_phr_rate_e;

Return Parameters:

Type Description

int DWT_SUCCESS = 0: if successful.

DWT_ERROR = -1: upon error.

Notes:

5.2.47 dwt_setdatarate

int dwt_setdatarate(dwt_uwb_bit_rate_e bitRate)

This function allows to configure the active payload datarate.

Parameters:

Type Name Description

dwt_uwb_bit_rate_e bitRate
Set the payload datarate, See below for supported

values.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

typedef enum

{

 DWT_BR_850K = 0, //!< UWB bit rate 850 kbits/s

 DWT_BR_6M8 = 1, //!< UWB bit rate 6.8 Mbits/s

 DWT_BR_NODATA = 2, //!< No data (SP3 packet format)

} dwt_uwb_bit_rate_e;

Return Parameters:

Type Description

int DWT_SUCCESS = 0: if successful.

DWT_ERROR = -1: upon error.

Notes:

5.2.48 dwt_setrxpac

int dwt_setrxpac(dwt_pac_size_e rxPAC)

This function allows to directly set the preamble acquisition chunk size.

Parameters:

Type Name Description

dwt_pac_size_e rxPAC
Preamble acquisition chunk size. See below for detailed

values.

typedef enum

{

 DWT_PAC8 = 0, //!< PAC 8 (recommended for RX of preamble length 128 and

below

 DWT_PAC16 = 1, //!< PAC 16 (recommended for RX of preamble length 256

 DWT_PAC32 = 2, //!< PAC 32 (recommended for RX of preamble length 512

 DWT_PAC4 = 3, //!< PAC 4 (recommended for RX of preamble length < 127

} dwt_pac_size_e;

Return Parameters:

Type Description

int DWT_SUCCESS = 0: if successful.

DWT_ERROR = -1: upon error.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Notes:

5.2.49 dwt_setsfdtimeout

int dwt_setsfdtimeout(uint16_t sfdTO)

This function allows to directly set the sfd timeout.

Parameters:

Type Name Description

uint16_t sfdTO SFD timeout value in number of symbols.

Return Parameters:

Type Description

int DWT_SUCCESS = 0: if successful.

DWT_ERROR = -1: upon error.

Notes:

5.2.50 dwt_settxpower

void dwt_settxpower(uint32_t power)

This function provides the API for the configuration of the TX power. The input is the desired tx

power to configure.

Parameters:

Type Name Description

uint32_t power TX power to configure 32 bits.

Return Parameters:

None

Notes:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.2.51 dwt_convert_tx_power_to_index

int dwt_convert_tx_power_to_index(uint32_t channel, uint8_t tx_power, uint8_t *tx_power_idx)

This function is used to convert a transmit power value into its corresponding tx power index.

Parameters:

Type Name Description

uint32_t channel
The channel for which the tx power index must be

calculated

uint8_t tx_power The Transmit power to convert

uint8_t *tx_power_idx Pointer to the returned TX power index

Return Parameters:

Type Description

int DWT_SUCCESS = 0: if successful.

DWT_ERROR = -1: upon error.

Notes:

5.2.52 dwt_configureisr

void dwt_configureisr(dwt_isr_flags_e flags)

This function provides the API for setting the ISR configuration flags.

Parameters:

Type Name Description

dwt_isr_flags_e flags ISR configuration flags (see dwt_isr_flags_e)

 typedef enum

 {

 DWT_LEN0_RXGOOD = 0x1, /*!< Treat 0-length packets as good RX */

 } dwt_isr_flags_e;

Return Parameters:

None

Notes:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.2.53 dwt_setpdoamode

int dwt_setpdoamode(dwt_pdoa_mode_e pdoaMode)

This function provides the API for configuring the PDOA mode.

Parameters:

Type Name Description

dwt_pdoa_mode_e pdoaMode PDOA mode to set.

 typedef enum

 {

 DWT_PDOA_M0 = 0x0, // DW PDOA mode is off

 DWT_PDOA_M1 = 0x1, // DW PDOA mode 1

 DWT_PDOA_M3 = 0x3, // DW PDOA mode 3

 } dwt_pdoa_mode_e;

Return Parameters:

Type Description

int DWT_SUCCESS = 0: if successful.

DWT_ERROR = -1: upon error.

Notes:

5.2.54 dwt_xtal_temperature_compensation

int32_t dwt_xtal_temperature_compensation(dwt_xtal_trim_t *params, uint8_t *xtaltrim)

This function provides the API for setting the crystal trim based on temperature, and crystal

temperature characteristics, if you pass in a temperature of TEMP_INIT (-127), the functions will also

read on-chip temperature sensors to determine the temperature, the crystal temperature could be

different.

If a crystal temperature of TEMP_INIT (-127) is passed, the function will assume 25C.

If a crystal trim of 0 is passed, the function will use the calibration value from OTP.

Parameters:

Type Name Description

dwt_xtal_trim_t *params The based-on parameters to set the new crystal trim.

uint8_t *xtaltrim Newly programmed crystal trim value.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

typedef struct

 {

 int8_t temperature; //!< pass in TEMP_INIT (-127) to use on

chip temperature sensor

 uint8_t crystal_trim; //!< pass in 0 if you want to use the

calibration value from OTP

 int8_t crystal_trim_temperature; //!< temperature of the crystal for

crystal_trim, if TEMP_INIT (-127) will assume 25C.

 int32_t crystal_alpha; //!< * 2^22 scaled alpha value

 int32_t crystal_beta; //!< * 2^22 scaled beta value

 } dwt_xtal_trim_t;

Return Parameters:

Type Description

int DWT_SUCCESS = 0: if successful.

DWT_ERROR = -1: upon error.

Notes:

5.2.55 dwt_settxcode

void dwt_settxcode(uint8_t tx_code)

This function sets txcode only: 1-8 PRF16 9-24 PRF64. The dwt_configure should be called prior to this

to configure other parameters

Parameters:

Type Name Description

uint8_t tx_code 1-8 PRF16, 9-24 PRF64

Return Parameters:

None

Notes:

5.2.56 dwt_setrxcode

void dwt_setrxcode(uint8_t rx_code)

This function sets rxcode only: 1-8 PRF16 9-24 PRF64. The dwt_configure should be called prior to this

to configure other parameters

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Parameters:

Type Name Description

uint8_t rx_code 1-8 PRF16, 9-24 PRF64

Return Parameters:

None

Notes:

5.3 TX/RX and Timestamp APIs

5.3.1 dwt_writetxdata

int dwt_writetxdata(uint16_t txBufferLength, uint8_t *txBuffer, uint16_t txBufferOffset);

This function is used to write the TX message data into the device’s internal TX buffer (max size is 1024

bytes).

Parameters:

Type Name Description

uint16_t txBufferLength

This is the total length to write into the TX buffer, it can include

the space for the two-byte CRC but it does not have to. The

device will automatically put a two-byte CRC in the last two bytes

of the TX data it is sending. The length of data to transmit is

specified by the txFrameLength parameter in dwt_writetxfctrl()

uint8_t* txBuffer Pointer to the buffer containing the data to send.

uint16_t txBufferOffset
This specifies an offset in the device’s internal TX buffer at which

to start writing data.

Return Parameters:

Type Description

int Return values can be either DWT_SUCCESS = 0 or DWT_ERROR = -1.

Notes:

This function writes the specified size of txBuffLength bytes from the memory, pointed to by the

txBuffBytes parameter, into the device’s internal transmit data buffer, starting at the specified offset

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

(txBufferOffset). During the transmission, the device will automatically add the two CRC bytes to

complete the TX frame to its txFrameLength as specified by the txFrameLength parameter in

dwt_writetxfctrl ().

NOTE: standard PHR mode allows frames of up to 127 bytes. For longer lengths non-standard PHR

mode DWT_PHRMODE_EXT needs to be set in the phrMode configuration passed into the

dwt_configure() function.

The dwt_writetxfctrl() function checks that the sum of txBufferLength and txBufferOffset is less than

the max (1024 bytes) internal TX buffer length to avoid messing with IC’s other registers and memory.

If such an error occurs, the write is not performed and the function returns DWT_ERROR. Otherwise,

the functions returns DWT_SUCCESS.

If DWT_API_ERROR_CHECK code switch is defined, the function will perform additional checks on

input parameters. If an error is detected, the function will assert. It is up to the developer to ensure

that the assert macro is correctly enabled in order to trap any error conditions that arise.

Example code:

Typical usage is to write the data, configure the frame control with starting buffer offset and frame

length and then enable transmission as follows:

dwt_writetxdata(fLength,dataBuffPtr,0); // write the frame data at offset 0

dwt_writetxfctrl(fLength+2,0,0); // set the frame control register

dwt_starttx(DWT_START_TX_IMMEDIATE); // send the frame

5.3.2 dwt_writetxfctrl

void dwt_writetxfctrl(uint16_t txFrameLength, uint16_t txBufferOffset, uint8_t ranging);

This function is used to configure the TX frame control register.

Parameters:

Type Name Description

uint16_t txFrameLength This is the total frame length, including the two-byte CRC.

uint16_t txBufferOffset
This specifies an offset in the device’s internal TX Buffer at which to

start writing data.

uint8_t ranging

This specifies whether the TX frame is a ranging frame or not, i.e.

whether the ranging bit is set in the PHY header (PHR) of the frame.

A value of 1 sets the ranging bit the PHR of the outgoing frame, while

a value of 0 will clear it.

Return Parameters:

none

Notes:

This function configures the TX frame control register parameters, namely the length of the frame and

the offset in the IC’s transmit data buffer where the data starts. It also controls whether the ranging

bit is set in the frame’s PHR.

file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_configure
file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_configure

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

The ranging bit identifies a frame as a ranging frame. This has no operational effect on the IC, but in

some receiver implementations, it might be used to enable hardware or software associated with

time stamping the frame. In the IC’s receiver, the time stamping does not depend or use the ranging

bit in the received PHR. The status of the ranging bit in received frames is reported by the cbRxOk

function (if enabled) in the rx_flags element of its dwt_cb_data_t structure parameter. See the

dwt_isr() and the dwt_setcallbacks() functions.

The dwt_writetxfctrl() function does not error check the txFrameLength and the txBufferOffset input

parameter unless the DWT_API_ERROR_CHECK code switch is defined. If this is defined it will assert if

an error is detected. It is up to the developer to ensure that the assert macro is correctly enabled in

order to trap any error conditions that arise.

Example code:

Typical usage is to write the data, configure the frame control with starting buffer offset and frame

length and then enable transmission as follows:

dwt_writetxdata(fLength,dataBuffPtr,0); // write the frame data at offset 0

dwt_writetxfctrl(fLength+2,0,0); // set the frame control register

dwt_starttx(DWT_START_TX_IMMEDIATE); // send the frame

5.3.3 dwt_starttx

int dwt_starttx(uint8_t mode);

This function initiates transmission of the frame. The mode parameter is described below.

Parameters:

Type Name Description

uint8_t mode
This is a bit mask defining the operation of the function, see notes and

Table 13.

Return Parameters:

Type Description

int Return values can be either DWT_SUCCESS = 0 or DWT_ERROR = -1.

Notes:

This function is called to start the transmission of a frame.

Transmission begins immediately if the mode parameter is DWT_START_TX_IMMEDIATE (0). When

the mode parameter is DWT_START_TX_DELAYED (1) transmission begins when the system time

reaches the starttime specified in the call to the dwt_setdelayedtrxtime() function described below.

The mode parameter, with DWT_RESPONSE_EXPECTED set (i.e. 0x2, 0x3, 0x6, 0xA, 0x12 or 0x22), is

used to turn the receiver on automatically after the TX event is complete (see table below). This is

used to make sure that there are no delays in turning on the receiver and that the IC can start

receiving data (e.g. ACK/response) which might come within 12 symbol times from the end of

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

transmission. This function returns 0 for success, or -1 for error. Error means that the transmission

has been aborted.

In performing a delayed transmission, if the host microprocessor is late in invoking the dwt_starttx()

function, (i.e. so that the IC’s system clock has passed the specified starttime and would have to

complete almost a whole clock count period before the start time is reached), then the transmission

is aborted (transceiver off) and the dwt_starttx() function returns the -1 error indication.

Table 13: Mode parameter to dwt_starttx() function

Mode
Mask
Value

Description

DWT_START_TX_IMMEDIATE 0x0 The transmitter starts sending frame immediately.

DWT_START_TX_DELAYED 0x1

The transmitter will start sending a frame once the
programmed starttime is reached.

See dwt_setdelayedtrxtime().

DWT_RESPONSE_EXPECTED 0x2

Response is expected, once the frame is sent the transceiver
will enter receive mode to wait for response message. See
dwt_setrxaftertxdelay(). NOTE all of the START_TX
commands can include DWT_RESPONSE_EXPECTED to
enable receiver after completed transmission event.

DWT_START_TX_DLY_REF 0x4

The transmitter will start sending a frame at specified time
(which is the sum of time in DREF_TIME register + any time
in DX_TIME register, i.e. programmed refttime and
starttime) See dwt_setreferencerxtime() and
dwt_setdelayedtrxtime().

DWT_START_TX_DLY_RS 0x8

The transmitter will start sending a frame at specified time
(which is the sum of RX timestamp + any time in DX_TIME
register, i.e. last received timestamp and starttime) See

dwt_readrxtimestamphi32()and dwt_setdelayedtrxtime().

DWT_START_TX_DLY_TS 0x10

The transmitter will start sending a frame at specified time
(which is the sum of TX timestamp + any time in DX_TIME
register, i.e. last transmitted timestamp and starttime) See
dwt_readtxtimestamphi32() and dwt_setdelayedtrxtime().

DWT_START_TX_CCA 0x20

The transmitter will start sending a frame if no preamble is

detected within PTO time (as configured in preamble

timeout register see dwt_setpreambledetecttimeout())

Example code:

Typical usage is to write the data, configure the frame control with starting buffer offset and frame

length and then enable transmission as follows:

dwt_writetxdata(fLength,dataBuffPtr,0); // write the frame data at offset 0

dwt_writetxfctrl(fLength,0,0); // set the frame control register

dwt_starttx(DWT_START_TX_IMMEDIATE); // send the frame

5.3.4 dwt_setdelayedtrxtime

void dwt_setdelayedtrxtime (uint32_t starttime);

file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_setdelayedtrxtime
file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_setdelayedtrxtime
file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_setdelayedtrxtime
file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_setdelayedtrxtime

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This function sets a send time to use in delayed send or the time at which the receiver will turn on (a

delayed receive). This function should be called to set the required send time before invoking the

dwt_starttx() function (above) to initiate the transmission (in DELAYED_TX mode), or dwt_rxenable()

(below) with delayed parameter set to 1.

Parameters:

Type Name Description

uint32_t starttime

The TX or RX start time. The 32-bit value is the high 32-bits of the

system time value at which to send the message, or at which to

turn on the receiver. The low order bit of this is ignored. This

essentially sets the TX or RX time in units of approximately 8 ns.

(or more precisely 512/(499.2e6*128) seconds)

For transmission this is the raw transmit timestamp not including

the antenna delay, which will be added. For reception it

specifies the time to turn the receiver on.

Return Parameters:

none

Notes:

This function is called to program the delayed transmit or receive start time. The starttime parameter

specifies the time at which to send/start receiving, when the system time reaches this time (minus

the times it needs to send preamble etc.) then the sending of the frame begins. The actual time at

which the frame’s RMARKER transits the antenna (the standard TX timestamp event) is given by the

starttime + the transmit antenna delay. If the application wants to embed this time into the message

being sent it must do this calculation itself.

The system time counter is 40 bits wide, giving a wrap period of 17.20 seconds.

NOTE: Typically, delayed sending might be used to give a fixed response delay with respect to an

incoming message arrival time, or, because the application wants to embed the message send time

into the message itself. The delayed receive might be used to save power and turn the receiver on

only when response message is expected.

Example code:

Typical usage is to write the data, configure the frame control with starting buffer offset and frame

length and then enable transmission as follows:

In this example the previous frame’s TX timestamp time is used, and a new frame is sent with 100 ms

delay from the previous TX time. The full 40-bit representation of 100 ms would be 0x17CDC0000,

however as the delay register uses high 32 bits only a value of 0x17CDC00 is used.

dwt_writetxdata(frameLength,dataBufferPtr,0); // write the frame data at

// offset 0

dwt_writetxfctrl(frameLength,0,0); // set the frame control

// register

dwt_setdelayedtrxtime(0x17CDC00); // set the 100ms delay

r = dwt_starttx(DWT_START_TX_DLY_TS); // send the frame at

file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_starttx
file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_rxenable

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

// appropriate time w.r.t TX

// timestamp

if (r != DWT_SUCCESS)

{

 // start TX was late, TX has been aborted.

 // Application should take appropriate recovery activity

}

5.3.5 dwt_setreferencerxtime

void dwt_setreferencetrxtime (uint32_t reftime);

This function sets a reference time to which any delay time is added (as specified by starttime in

dwt_setdelayedtrxtime()). The sum of both will be used as a delayed send time or the time at which

the receiver will turn on (a delayed receive). This function should be called to set the required

reference time before invoking the dwt_starttx() function (above) to initiate the transmission (in

DELAYED_TX mode), or dwt_rxenable() (below) with delayed parameter set to 1.

Parameters:

Type Name Description

uint32_t reftime

The TX or RX reference time. The 32-bit value is the high 32-bits

of the system time. The low order bit of this is ignored. This

essentially sets the TX or RX time in units of approximately 8 ns.

(or more precisely 512/(499.2e6*128) seconds)

Return Parameters:

none

Notes:

This function is called to save the delayed transmit or receive reference time. The reftime parameter

specifies a time at which for example a “sync or beacon” frame was sent, and which will be used as a

reference w.r.t. which other frames will be sent/received.

The system time counter is 40 bits wide, giving a wrap period of 17.20 seconds.

NOTE: Typically, delayed sending might be used to give a fixed response delay with respect to an

incoming message arrival time, or, because the application wants to embed the message send time

into the message itself. The delayed receive might be used to save power and turn the receiver on

only when response message is expected.

Example code:

Typical usage is to write the data, configure the frame control with starting buffer offset and frame

length and then enable transmission as follows:

In this example consider a reference “sync or beacon” frame is sent at reference time. This time is

saved in the reference register. Then, sometime later, we wish to transmit a frame 100 ms after this

time, perhaps a next beacon frame. The full 40-bit representation of 100ms would be 0x17CDC0000,

file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_starttx
file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_rxenable

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

however as the reference time register contains only the high 32 bits a value of 0x17CDC00 is used.

(The TX timestamp value should be read after a TX done interrupt triggers.)

dwt_setreferencetrxtime(dwt_readtxtimestamphi32()) ; // read TX time e.g. of

 // sync frame

dwt_writetxdata(frameLength,dataBufferPtr,0); // write the new frame data at

// offset 0

dwt_writetxfctrl(frameLength,0,0); // set the frame control

// register

dwt_setdelayedtrxtime(0x17CDC00); // set the delay of 100 ms

r = dwt_starttx(DWT_START_TX_DLY_REF); // send the frame at

// appropriate time w.r.t. REF

// timestamp

if (r != DWT_SUCCESS)

{

 // start TX was late, TX has been aborted.

 // Application should take appropriate recovery activity

}

5.3.6 dwt_readtxtimestamp

void dwt_readtxtimestamp(uint8_t* timestamp);

This function reads the actual time at which the frame’s RMARKER transits the antenna (the

standard TX timestamp event). This time will include any TX antenna delay if programmed via the

dwt_gettxantennadelay() API function. The function returns a 40-bit timestamp value in the buffer

passed in as the input parameter.

Parameters:

Type Name Description

uint8_t* timestamp

The pointer to the buffer into which the timestamp value is read.

(The buffer needs to be at least 5 bytes long.) The low order byte

is the first element.

Return Parameters:

none

Notes:

This function can be called after the transmission complete event, DWT_INT_TFRS (see dwt_isr()

function).

5.3.7 dwt_readtxtimestamplo32

uint32_t dwt_readtxtimestamplo32(void);

This function returns the low 32-bits of the 40-bit transmit timestamp (dwt_readtxtimestamp()).

Parameters:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

none

Return Parameters:

Type Description

uint32_t Low 32-bits of the 40-bit transmit timestamp.

Notes:

This function can be called after the transmission complete event, DWT_INT_TFRS (see dwt_isr()

function).

5.3.8 dwt_readtxtimestamphi32

uint32_t dwt_readtxtimestamphi32(void);

This function returns the high 32-bits of the 40-bit transmit timestamp.

Parameters:

none

Return Parameters:

Type Description

uint32_t High 32-bits of the 40-bit transmit timestamp.

Notes:

This function can be called after the transmission complete event, DWT_INT_TFRS (see dwt_isr()

function).

5.3.9 dwt_readrxtimestamp

void dwt_readrxtimestamp(uint8_t* timestamp, dwt_ip_sts_segment_e segment);

:Notes:

Parameters:

Type Name Description

uint8_t* timestamp The pointer to the buffer into which the timestamp value

is read. (The buffer needs to be at least 5 bytes long.) The

low order byte is the first element.

dwt_ip_sts_segment_e segment

This is for software compatibility with other products.

Not used with DW3xxx. The value should be set to

DWT_COMPAT_NONE.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Return Parameters:

none

Notes:

This function can be called after the frame received event, DWT_INT_RFCG (see dwt_isr() function).

Which means we have a good FCS and a valid timestamp.

5.3.10 dwt_readrxtimestamp_ipatov

void dwt_readrxtimestamp_ipatov(uint8_t* timestamp);

:Notes:

Parameters:

Type Name Description

uint8_t* timestamp The pointer to the buffer into which the timestamp value is read.

(The buffer needs to be at least 5 bytes long.) The low order byte

is the first element.

Return Parameters:

none

Notes:

This function can be called after the frame received event, DWT_INT_RFCG (see dwt_isr() function).

Which means we have a good FCS and a valid timestamp.

5.3.11 dwt_readrxtimestamp_sts

void dwt_readrxtimestamp_sts(uint8_t* timestamp);

:Notes: API function, w.r.t. STS CIR. It is only valid if packet with STS is used, see dwt_configure().

The function returns a 40-bit value.

Parameters:

Type Name Description

uint8_t* timestamp The pointer to the buffer into which the timestamp value is read.

(The buffer needs to be at least 5 bytes long.) The low order byte

is the first element.

Return Parameters:

none

Notes:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This function can be called after the frame received event, DWT_INT_RFCG (see dwt_isr() function).

Which means we have a good FCS and a valid timestamp.

5.3.12 dwt_readrxtimestampunadj

void dwt_readrxtimestampunadj(uint8_t* timestamp);

This function returns the raw time at which the frame’s RMARKER is received before any CIA first

path algorithm adjustments. This will be the high 32-bits of the 40-bit system time.

Parameters:

Type Name Description

uint8_t* timestamp The pointer to the buffer into which the timestamp value is read.

(The buffer needs to be at least 4 bytes long.) The low order byte

is the first element.

Return Parameters:

none

Notes:

5.3.13 dwt_readrxtimestamplo32

uint32_t dwt_readrxtimestamplo32(dwt_ip_sts_segment_e segment);

This function returns the low 32-bits of the 40-bit received timestamp (dwt_readrxtimestamp()).

Parameters:

Type Name Description

dwt_ip_sts_segment_e segment

This is for software compatibility with other products. Not

used with DW3xxx. The value should be set to

DWT_COMPAT_NONE.

Return Parameters:

Type Description

uint32_t Low 32-bits of the 40-bit received timestamp.

Notes:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This function can be called after the frame received event, DWT_INT_RFCG (see dwt_isr () function).

Which means we have a good FCS and a valid timestamp.

This API should not be used when using Double RX buffer mode (see dwt_setdblrxbuffmode ()), as it

will not return a valid RX time. dwt_readrxtimestamp_ipatov() or dwt_readrxtimestamp_sts() should

be used instead.

5.3.14 dwt_readrxtimestamphi32

uint32_t dwt_readrxtimestamphi32(void);

This function returns the high 32-bits of the 40-bit received timestamp (dwt_readrxtimestamp()).

Parameters:

none

Return Parameters:

Type Description

uint32_t High 32-bits of the 40-bit received timestamp.

Notes:

This function can be called after the frame received event, DWT_INT_RFCG (see dwt_isr() function).

Which means we have a good FCS and a valid timestamp.

This API should not be used when using Double RX buffer mode (see dwt_setdblrxbuffmode()), as it

will not return a valid RX time. dwt_readrxtimestamp_ipatov() or dwt_readrxtimestamp_sts() should

be used instead.

5.3.15 dwt_readsystime

void dwt_readsystime(uint8_t* timestamp);

This function returns the system time, which is a high 32-bit value of internal 40-bit system counter.

The time will only be valid when the IC is in IDLE, TX or RX states because the system timer is

running, the timer is disabled in IDLE_RC or SLEEP states.

Parameters:

Type Name Description

uint8_t* timestamp The pointer to the buffer into which the timestamp value is read.

(The buffer needs to be at least 4 bytes long.) The low order byte

is the first element. The low order bit will always be 0, as the

system timer runs in units of approximately 8 ns. (more precisely

512/(499.2e6*128) seconds or 63.8976GHz).

Return Parameters:

none

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Notes:

This function can be called to read the system time, when the IC is not in the INIT state.

DW3000 note: once this register is read the system time value is latched and any subsequent read

will return the same value. To clear the current value in the register an SPI write transaction is

necessary, the following read of the SYS_TIME register will return a new value.

5.3.16 dwt_readsystimestamphi32

uint32_t dwt_readsystimestamphi32(void);

This function returns the high 32-bits of the 40-bit system time. The LSB will always be 0, as the

system timer runs in units of approximately 8 ns. (more precisely 512/(499.2e6*128) seconds or

63.8976GHz).

Parameters:

none

Return Parameters:

Type Description

uint32_t High 32-bits of the 40-bit system timestamp.

Notes:

This function can be called to read the IC system time.

DW3000 note: once this register is read the system time value is latched and any subsequent read

will return the same value. To clear the current value in the register an SPI write transaction is

necessary, the following read of the SYS_TIME register will return a new value.

5.3.17 dwt_reset_system_counter

void dwt_reset_system_counter(void);

This function will reset the internal system time counter. The counter will be momentarily reset to 0,

and then will continue counting as normal. The system time/counter is only available when device is

in IDLE or TX/RX states.).

Parameters:

none

Return Parameters:

none

Notes:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.3.18 dwt_forcetrxoff

void dwt_forcetrxoff(void);

This function may be called at any time to disable the active transmitter or the active receiver and

put the IC back into idle mode (transceiver off).

Parameters:

none

Return Parameters:

none

Notes:

The dwt_forcetrxoff() function can be called any time and it will disable the active transmitter or

receiver and put the device in IDLE mode. It issues a transceiver off command to the IC and also

clears status register event flags, so that there should be no outstanding/pending events for

processing. The following flags are cleared:

In SYS_STATUS register: ARFE, HPDWARN, RXSTO, RXPTO, CIAERR, RXFTO, RXFSL, RXFCE, RXFCG,

RXFR, RXPHE, RXPHD, CIA_DONE, RXSFDD, RXPRD, TXFRS, TXPHS, TXPRS, TXFRB, AAT;

And in SYS_STATUS_HI register: RXGF, RXEOF, RXSTSx, TXSTSx, CCA_FAIL, RXPREJ, RXSCE.

5.3.19 dwt_rxenable

int dwt_rxenable(int mode);

This function turns on the receiver to wait for a receive frame. The mode parameter is a bit field

that allows for selection of number of different RX operations as defined in Table 14. In delayed RX

modes the receiver is not turned on until as specific time, set via dwt_setdelayedtrxtime() and

dwt_setreferencerxtime(). This facility is useful to save power in the case when the timing of a

response is known. The mode parameter also controls whether the receiver is enabled in case of

error, i.e. the delayed RX being late, see notes below for details.

Parameters:

Type Name Description

int mode
This is a bit mask defining the operation of the function, see notes

and

Return Parameters:

Type Description

int Return values can be either DWT_SUCCESS = 0 or DWT_ERROR = -1.

file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_setdelayedtrxtime

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Notes:

This function can be called any time to enable the receiver. The device should be initialised and have

its RF configuration set.

In performing a delayed RX, the host microprocessor can be late in invoking the dwt_rxenable(), (i.e.

the system clock has passed the starttime specified in the call to the dwt_setdelayedtrxtime()

function). The IC has a status flag warning when the specified start time is more than a half period (of

the system clock) away. If this is the case, since the clock has a period of over 17 seconds, it is

assumed that such a long RX delay is not needed, and the delayed RX is cancelled. The receiver is

then either immediately enabled or left off depending on whether DWT_IDLE_ON_DLY_ERR was set

in the supplied “mode” parameter, and error flag is returned indicating that the RX on was late. It is

up to the application to take whatever remedial action is needed in the case of this late error.

Table 14: Mode parameter to dwt_rxenable() function

Mode
Mask
Value

Description

DWT_START_RX_IMMEDIATE 0x00 The receiver is activated immediately.

DWT_START_RX_DELAYED 0x01
The receiver, otherwise the receiver will be turned on when
the time reaches the starttime set through the
dwt_setdelayedtrxtime().

DWT_IDLE_ON_DLY_ERR 0x02

This applies only when a delayed start is determined to be
late (see notes above). If this is set the receiver will not be
enabled in case of a late error, i.e. the IC will be left in IDLE
mode. Otherwise, the receiver will be enabled

DWT_START_RX_DLY_REF 0x04

The receiver will be enabled at specified time (which is the
sum of time in DREF_TIME register + any time in DX_TIME
register, i.e. programmed refttime and starttime) See
dwt_setreferencerxtime() and dwt_setdelayedtrxtime().

DWT_START_RX_DLY_RS 0x08

The receiver will be enabled at specified time (which is the
sum of RX timestamp + any time in DX_TIME register, i.e.
last received timestamp and starttime) See

dwt_readrxtimestamphi32()and dwt_setdelayedtrxtime().

DWT_START_RX_DLY_TS 0x10

The receiver will be enabled at specified time (which is the
sum of TX timestamp + any time in DX_TIME register, i.e.
last transmitted timestamp and starttime) See

dwt_readtxtimestamphi32() and dwt_setdelayedtrxtime().

5.3.20 dwt_setsniffmode

void dwt_setsniffmode(int enable, uint8_t timeOn, uint8_t timeOff);

When the receiver is enabled, it begins looking for preamble sequence symbols, and by default, in this

preamble-hunt mode the receiver is continuously active. This dwt_setsniffmode() function allows the

configuration of a lower power preamble-hunt mode. In SNIFF mode the receiver (RF and digital) is not on all

the time, but rather is sequenced on and off with a specified duty-cycle. Using SNIFF mode causes a reduction

file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_setdelayedtrxtime
file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_setdelayedtrxtime
file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_setdelayedtrxtime
file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_setdelayedtrxtime

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

in RX sensitivity depending on the ratio and durations of the on and off periods. See “Low-Power SNIFF mode”

chapter in the User Manual [2] for more details.

Parameters:

Type Name Description

int enable

1 to activate SNIFF mode or 2 to enable SNIFF with LDC, 0 to

deactivate it and go back to the normal higher-powered reception

mode.

uint8_t timeOn

The receiver ON time in PACs (as per the rxPAC parameter in the

dwt_config_t structure parameter to the dwt_configure() API

function call). The minimum value for correct operation is 2, giving

an on time of 2 PACs. The maximum value is 15.

Value of 1 is not allowed and will disable SNIFF mode.

uint8_t timeOff
The receiver OFF time, expressed in multiples of 128/125 µs (~1

µs). Max value is 255.

Return Parameters:

none

Notes:

This function can be called as part of device receiver configuration.

By default (where this API is not invoked) the IC will operate its receiver in normal reception mode. If

this API is used to enable SNIFF mode this will be maintained until a reset or it is disabled or re-

configured by another call to this dwt_setsniffmode() function. The SNIFF mode setting is not

affected by the dwt_configure() function.

5.3.21 dwt_setdblrxbuffmode

void dwt_setdblrxbuffmode (dwt_dbl_buff_state_e dbl_buff_state, dwt_dbl_buff_mode_e
dbl_buff_mode);

This function enables double buffered receive mode.

Parameters:

Type Name Description

dwt_dbl_buff_state_e dbl_buff_state DBL_BUF_STATE_EN to enable, DBL_BUF_STATE_DIS

to disable the double buffer RX feature.

dwt_dbl_buff_mode_e dbl_buff_mode DBL_BUF_MODE_AUTO to enable RX auto re-enable

on good frame reception. If mode is

file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_configure

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Type Name Description

DBL_BUF_MODE_MAN, then the host needs to re-

enable the receiver following a good frame reception

Return Parameters:

none

Notes:

The dwt_setdblrxbuffmode() function is used to configure the receiver in double buffer mode. This

should not be done when the receiver is enabled. It should be selected in idle mode before the

dwt_setdblrxbuffmode() function is called.

Once the data for the received frame is read, the host should call the dwt_signal_rx_buff_free() to let

the device know the buffer is free again, the host will then be ready to read the next received frame.

This is done in the dwt_isr() which handles the IRQ.

The reader is referred to “Double Receive Buffer” chapter in the User Manual [2] for more details.

5.3.22 dwt_signal_rx_buff_free

void dwt_signal_rx_buff_free (void);

This function signals to the DW3xxx that the host is finished with current buffer and the buffer is free

for the DW3xxx to receive into again. This function is only relevant if device has double RX buffer

mode enabled.

Parameters:

none

Return Parameters:

none

Notes:

5.3.23 dwt_setrxtimeout

void dwt_setrxtimeout (uint32_t time);

The dwt_setrxtimeout() function sets the receiver to timeout (and disable) when no frame is

received within the specified time. This function should be called before the dwt_rxenable()

function is called to turn on the receiver. The time parameter used here is in 1.0256 us (UWB

microseconds, i.e. 512/499.2 MHz) units. The maximum RX timeout is ~ 1.0754s.

Parameters:

Type Name Description

uint32_t time Timeout time in microseconds (1.0256 us). If this is 0, the timeout

will be disabled. The max value is 0xFFFFF.

file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_rxenable

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Return Parameters:

none

Notes:

If RX timeout is being employed then this function should be called before dwt_rxenable() to

configure the frame wait timeout time, and enable the frame wait timeout.

5.3.24 dwt_setrxaftertxdelay

void dwt_setrxaftertxdelay(uint32_t rxDelayTime);

This function sets the delay in turning the receiver on after a frame transmission has completed. The

delay, rxDelayTime, is in UWB microseconds (1 UWB microsecond is 512/499.2 microseconds). It is a

20-bit wide field. This should be set before start of frame transmission after which a response is

expected, i.e. before invoking the dwt_starttx() function (above) to initiate the transmission (in

DWT_RESPONSE_EXPECTED mode). E.g. transmission of a frame with an ACK request bit set.

Parameters:

Type Name Description

uint32_t rxDelayTime The turnaround time, in UWB microseconds, between the TX

completion and the RX enable.

Return Parameters:

none

Notes:

This function is used to set the delay time before automatic receiver enable after a frame

transmission. The smallest value that can be set is 0. If 0 is set the IC will turn the receiver on as soon

as possible, which approximately takes 6.2 µs. If setting a value smaller than 6.2 µs, the device will still

take 6.2 µs to switch to receive mode.

5.3.25 dwt_setpreambledetecttimeout

void dwt_setpreambledetecttimeout (uint16_t timeout);

This dwt_setpreambledetecttimeout() API function sets the receiver to timeout (and disable) when

no preamble is received within the specified time. This function should be called before the

dwt_rxenable() function is called to turn on the receiver. The time parameter units are PACs (as per

the rxPAC parameter in the dwt_config_t structure parameter to the dwt_configure() API function

call).

Parameters:

file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_rxenable
file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_starttx
file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_rxenable

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Type Name Description

uint16_t timeout This is the preamble detection timeout duration. If preamble is

not detected within this time, counted from the time the receiver

is enabled, the receiver will be turned off.

The time here is specified in multiples of PAC size, (as per the

rxPAC parameter in the dwt_config_t structure parameter to the

dwt_configure() API function call). The IC automatically adds 1 to

the configured value. A value of 0 disables the timer and timeout.

Return Parameters:

none

Notes:

If preamble detection timeout is being employed, then this function should be called before

dwt_rxenable() is called.

5.3.26 dwt_readrxdata

void dwt_readrxdata(uint8_t *buffer, uint16_t length, uint16_t rxBufferOffset);

This function reads a number, len, bytes from the IC receive data buffer, beginning at the specified

offset, bufferOffset, into the given buffer, buffer.

Parameters:

Type Name Description

uint8_t* buffer The pointer to the buffer into which the data will be read.

uint16_t length The length of data to be read (in bytes).

uint16_t rxBufferOffset The offset at which to start to read the data.

Return Parameters:

none

Notes:

This function should be called on the reception of a good frame to read the received frame data. The

offset might be used to skip parts of the frame that the application is not interested in or has read

previously.

5.3.27 dwt_read_scratch_data

void dwt_read_scratch_data(uint8_t *buffer, uint16_t length, uint16_t rxBufferOffset);

file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_rxenable

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This is used to read the data from the scratch buffer, from an offset location given by offset

parameter. The scratch buffer size is 128 bytes. The buffer can be used by the AES engine depending

on the configuration of destination and source ports: dwt_aes_src_port_e and dwt_aes_dst_port_e.

Parameters:

Type Name Description

uint8_t* buffer The pointer to the buffer into which the data will be read.

uint16_t length The length of data to be read (in bytes).

uint16_t rxBufferOffset The offset in the scratch buffer from which to read the data.

Return Parameters:

none

Notes:

5.3.28 dwt_write_scratch_data

void dwt_write_scratch_data(uint8_t *buffer, uint16_t length, uint16_t bufferOffset);

This is used to write the data to the scratch buffer, to an offset location given by offset parameter.
The scratch buffer size is 128 bytes. The buffer can be used by the AES engine depending on the
configuration of destination and source ports: dwt_aes_src_port_e and dwt_aes_dst_port_e.

Parameters:

Type Name Description

uint8_t* buffer The pointer to the buffer into which the data will be read.

uint16_t length The length of data to be read (in bytes).

uint16_t bufferOffset The offset in the scratch buffer to which to write the data

Return Parameters:

none

5.4 Diagnostic APIs

5.4.1 dwt_readaccdata

DEPRECATED: This function is now deprecated for new development. Please use dwt_readcir or

DWT_READCIR_48B

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

void dwt_readaccdata(uint8_t *buffer, uint16_t len, uint16_t accOffset);

This API function reads data from the IC’s accumulator memory. This data represents the channel

impulse response (CIR) of the RF channel. Reading this data is not required in normal operation but it

may be useful for diagnostic purposes. The accumulator contains complex values, each comprised of

an 18-bit real integer and an 18-bit imaginary integer, for each tap of the accumulator. Each complex

value represents a 1 ns sample interval (or more precisely half a period of the 499.2 MHz fundamental

frequency).

When STS mode is enabled there are two separate accumulations and two CIRs: one during the Ipatov

sequence and one during the STS, both may be read using this dwt_readaccdata() API function. The

Ipatov sequence begins at offset 0 and has a span of one symbol time (This is 992 samples for the

nominal 16 MHz mean PRF, or, 1016 samples for the nominal 64 MHz mean PRF). The STS begins at

offset 1024 and has a span of half a symbol time (512 samples irrespective of PRF setting). If PDOA

mode 3 is used, the STS CIR will be split into two. One half of STS symbols and corresponding CIR will

be received through one antenna port and saved into CIR memory from 1024 to 1535, and the second

half of STS symbols will be received through the other antenna port and saved into CIR memory from

1536 to 2047.

The dwt_readaccdata() function reads, len, bytes of accumulator buffer data, from a given offset,

sampleOffset, into the memory pointed to by the supplied buffer parameter. Each 18-bit complex

sample has 3 bytes of real and 3 bytes of imaginary data (delivered by the IC as signed 24-bit numbers).

The accumulator data starts from buffer[1]. The first byte written to buffer[0] is always a dummy byte,

and to allow for this the specified length should always be 1 bigger than the length required.

When reading from CIR memory with an offset less than 127, a normal SPI read can be used, however

to read data from CIR memory with offset greater than 127, an indirect SPI read has to be done. To

perform an indirect SPI read indirect pointers need to be used: PTR_ADDR_A or PTR_ADDR_B. Firstly

the register address needs to be programmed into e.g. indirect pointer A (PTR_ADDR_A) and offset

into PTR_OFFSET_A and then the indirect pointer register (INDIRECT_PRT_A) needs to be read as

normal to read out the required data. Please see more details on this in DW3XXX User Manual [2].

For example to read the first 2 complex samples of the CIR the function should be done as shown in

the example below:

Example code:

uint8_t cir_buiffer[xx] ;

dwt_readaccdata(uint8_t *buffer, uint16_t len, uint16_t sampleOffset);

Note that the length is in bytes while the offset is in complex samples.

Both accumulators can be read together in this case length should be 1536*6 + 1 bytes.

Parameters:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Type Name Description

uint8_t* buffer The pointer to the destination buffer into which the read

accumulator data will be written.

uint16_t len The length of data to be read (in bytes). Since each complex

value occupies six octets, the value used here should naturally

be a multiple of six, plus 1 for the dummy byte as described

above. Maximum length is 9217

uint16_t bufferOffset The offset at which to start to read the data. Offset 0 should

be used when reading the full accumulator.

Return Parameters:

none

Notes:

 dwt_readaccdata() may be called after frame reception to read the accumulator data for diagnostic

purposes. The accumulator is not double buffered so this access must be done before the receiver is

re-enabled otherwise the accumulator data may be overwritten during the reception of the next frame.

The data returned in the buffer has the following format (for bufferOffset input of zero):

buffer index Description of elements within buffer

0 Dummy Octet

1 Low 8 bits of real part of accumulator sample index 0

2 Mid 8 bits of real part of accumulator sample index 0

3 High 8 bits of real part of accumulator sample index 0

4 Low 8 bits of imaginary part of accumulator sample index 0

5 Mid 8 bits of imaginary part of accumulator sample index 0

6 High 8 bits of imaginary part of accumulator sample index 0

7 Low 8 bits of real part of accumulator sample index 1

8 Mid 8 bits of real part of accumulator sample index 1

9 High 8 bits of real part of accumulator sample index 1

10 Low 8 bits of imaginary part of accumulator sample index 1

: :

In examining the CIR it is normal to compute the magnitude of the complex values.

5.4.2 dwt_configciadiag

void dwt_configciadiag (uint8_t enable_mask);

This function can be used to enable full or partial CIA diagnostic calculations in the IC during

reception processing of frame. Note partial diagnostics are enabled by default in the IC.

Parameters:

Type Name Description

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

int enable_mask Table 15 lists the allowed values.

Table 15: Values for dwt_configciadiag() enable_mask parameter

Event Bit mask Description

DW_CIA_DIAG_LOG_MIN 0x0 CIA to log reduced set of diagnostic registers

DW_CIA_DIAG_LOG_ALL 0x1 CIA to log the whole set of diagnostic registers

DW_CIA_DIAG_LOG_MIN 0x2
CIA to copy to swinging set a minimal set of diagnostic
registers in Double Buffer mode

DW_CIA_DIAG_LOG_MID 0x4
CIA to copy to swinging set a medium set of diagnostic
registers in Double Buffer mode.

DW_CIA_DIAG_LOG_MAX 0x8
CIA to copy to swinging set a maximum set of diagnostic
registers in Double Buffer mode.

Return Parameters:

none

Notes:

Turing on diagnostics, means that the reception of a frame consumes some more power and takes

more time while the IC performs the calculations to generate the diagnostic values. The diagnostic

values may be read, as part of the RX callback for instance, using the dwt_readdiagnostics() API.

5.4.3 dwt_readdiagnostics

void dwt_readdiagnostics(dwt_rxdiag_t * diagnostics);

This function reads receiver frame quality diagnostic values.

Parameters:

Type Name Description

dwt_rxdiag_t* diagnostics Pointer to the diagnostics structure which will contain the

read data.

typedef struct
{
 uint8_t ipatovRxTime[5] ;
 uint8_t ipatovRxStatus ;
 uint16_t ipatovPOA ;
 uint8_t stsRxTime[5] ;
 uint16_t stsRxStatus ;

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

 uint16_t stsPOA;
 uint8_t sts2RxTime[5];
 uint16_t sts2RxStatus;
 uint16_t sts2POA;
 uint8_t tdoa[6];
 int16_t pdoa;
 int16_t xtalOffset ;
 uint32_t ciaDiag1 ;
 uint32_t ipatovPeak ;
 uint32_t ipatovPower ;
 uint32_t ipatovF1 ;
 uint32_t ipatovF2 ;
 uint32_t ipatovF3 ;
 uint16_t ipatovFpIndex ;
 uint16_t ipatovAccumCount ;
 uint32_t stsPeak ;
 uint32_t stsPower ;
 uint32_t stsF1 ;
 uint32_t stsF2 ;
 uint32_t stsF3 ;
 uint16_t stsFpIndex ;
 uint16_t stsAccumCount ;
 uint32_t sts2Peak;
 uint32_t sts2Power;
 uint32_t sts2F1;
 uint32_t sts2F2;
 uint32_t sts2F3;
 uint16_t sts2FpIndex;
 uint16_t sts2AccumCount;
}dwt_rxdiag_t ;

Return Parameters:

none

Notes:

This function is used to read the received frame diagnostic data. They can be read after a frame is

received (e.g. after DWT_SIG_RX_OKAY event reported in the RX call-back function called from

dwt_isr()). CIA diagnostic level must be configured with the dwt_configciadiag() otherwise only the

minimum diagnostics will be available, please see DW3XXX User Manual [2].

Fields Description of fields within the dwt_rxdiag_t structure

ipatovRxTime 40-bit RX timestamp from Ipatov sequence, arranged as array of octets, with

least significant octet first.

ipatovRxStatus 8-bit RX status info for Ipatov sequence

ipatovPOA POA from Ipatov preamble CIR

stsRxTime 40-bit RX timestamp from the STS, arranged as array of octets, with least

significant octet first.

stsRxStatus 16-bit RX status info for STS

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Fields Description of fields within the dwt_rxdiag_t structure

stsPOA POA from STS CIR

sts2RxTime 40-bit RX timestamp from the 2nd STS, arranged as array of octets, with least

significant octet first. (this is used in PDOA mode 3, when the STS is split)

sts2RxStatus 16-bit RX status info for the 2nd STS (this is used in PDOA mode 3, when the

STS is split)

ciphe2rPOA POA from the 2nd STS CIR (this is used in PDOA mode 3, when the STS is split)

tdoa TDOA from two STS RX timestamps (valid when PDOA mode 3 is configured)

pdoa PDOA from two POAs, signed int [1:-11] in radians

xtalOffset Estimated crystal offset of remote device. This is PPM x16, i.e. divide integer

number by 16 to get the value in PPM.

ciaDiag1 Diagnostics common to both sequences

ipatovPeak index and amplitude of peak sample in Ipatov sequence CIR

ipatovPower channel area allows estimation of channel power for the Ipatov sequence

ipatovF1 First path amplitude for the Ipatov sequence value reporting the magnitude

for the sample at the index 1 after the reported first path index value.

ipatovF2 First path amplitude for the Ipatov sequence value reporting the magnitude

for the sample at the index 2 after the reported first path index value.

ipatovF3 First path amplitude for the Ipatov sequence value reporting the magnitude

for the sample at the index 3 after the reported first path index value.

ipatovFpIndex First path index for Ipatov sequence

ipatovAccumCount Number accumulated symbols for Ipatov sequence

stsPeak index and amplitude of peak sample in STS CIR

stsPower channel area allows estimation of channel power for the STS

stsF1 First path amplitude for the STS value reporting the magnitude for the

sample at the index 1 after the reported first path index value.

stsF2 First path amplitude for the STS value reporting the magnitude for the

sample at the index 2 after the reported first path index value.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Fields Description of fields within the dwt_rxdiag_t structure

stsF3 First path amplitude for the STS value reporting the magnitude for the

sample at the index 3 after the reported first path index value.

stsFpIndex First path index for STS

stsAccumCount Number accumulated symbols for STS

sts2Peak index and amplitude of peak sample in the 2nd STS CIR, (valid when PDOA

mode 3 is configured)

sts2Power channel area allows estimation of channel power for the 2nd STS, (valid when

PDOA mode 3 is configured)

sts2F1 First path amplitude for the 2nd STS value reporting the magnitude for the

sample at the index 1 after the reported first path index value. (valid when

PDOA mode 3 is configured)

sts2F2 First path amplitude for the 2nd STS value reporting the magnitude for the

sample at the index 2 after the reported first path index value. (valid when

PDOA mode 3 is configured)

sts2F3 First path amplitude for the 2nd STS value reporting the magnitude for the

sample at the index 3 after the reported first path index value. (valid when

PDOA mode 3 is configured)

sts2FpIndex First path index for the 2nd STS, (valid when PDOA mode 3 is configured)

sts2AccumCount Number accumulated symbols for the 2nd STS, (valid when PDOA mode 3 is

configured)

5.4.4 dwt_readdiagnostics_acc

int dwt_readdiagnostics_acc(dwt_cirdiags_t *cir_diag, dwt_acc_idx_e acc_idx)

This function reads receiver frame quality diagnostic values. A derivative of dwt_readdiagnostic(),

reading only the required diagnostic values. The acc_idx is added to only return a specific

accumulator result i.e either IPATOV or STS1 or STS2. CIA diagnostic level must be configured with

the dwt_configciadiag() otherwise only the minimum diagnostics will be available, please see

DW3XXX User Manual [2].

Parameters:

Type Name Description

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

dwt_cirdiags_t

*

cir_data Pointer to the diagnostics structure which will contain the

read data.

dwt_acc_idx_e acc_idx Enum to select the right accumulator.

typedef struct
 {
 uint32_t power; //!< Channel area allows estimation of channel power for the
CIR sequence, [30:0].
 uint32_t F1; //!< F1 for the CIR sequence, [21:0].
 uint32_t F2; //!< F2 for the CIR sequence, [21:0].
 uint32_t F3; //!< F3 for the CIR sequence, [21:0].
 uint32_t peakAmp; //!< Amplitude of peak sample in the CIR (Q20.2 format)
 uint16_t peakIndex; //!< Index of peak sample in the CIR
 uint16_t FpIndex; //!< First path index for the CIR (Q10.6 format).
 uint16_t accumCount; //!< Number accumulated symbols for the CIR
} dwt_cirdiags_t;

For detailed description refer to the table above in dwt_readdiagnostic() API.

typedef enum
{

DWT_ACC_IDX_IP_M = 0, // Ipatov preamble
DWT_ACC_IDX_STS0_M, // STS1 (1st half in case of PDOA Mode3 used)

DWT_ACC_IDX_STS1_M // STS2 (2nd half in case of PDOA Mode3 used)

} dwt_acc_idx_e;

Return Parameters:

DWT_SUCCESS or DWT_ERROR

Notes:

5.4.5 dwt_readcir

int dwt_readcir (uint32_t *buffer, dwt_acc_idx_e cir_idx, uint16_t sample_offs,

 uint16_t num_samples, dwt_cir_read_mode_e mode);

This is used to read complex samples from the CIR/Accumulator buffer specifying the read mode.

• Full sample mode: DWT_CIR_READ_FULL:

48 bits complex samples with 24-bit real and 24-bit imaginary (18bits dynamic)

• Reduced sample mode: (DWT_CIR_READ_LO, DWT_CIR_READ_MID, DWT_CIR_READ_HI)

32-bit complex samples with 16-bit real and 16-bit imaginary.

Note that multiple CIRs cannot be read in one go, as the accumulator memory is not contiguous.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Accumulator sizes depend on the accumulator and on the PRF setting, see the following constants:

DWT_CIR_LEN_ST

DWT_CIR_LEN_IP_PRF16

DWT_CIR_LEN_IP_PRF64

Parameters:

Type Name Description

uint32_t buffer

The buffer into which the data will be read. The buffer

should be big enough to accommodate num_samples of

size 64 bit (2 words) for DWT_CIR_READ_FULL, or 32 bit

(1 word) for the "faster" reading modes.

dwt_acc_idx_e cir_idx

Accumulator index. It is used to defines the CIR

accumulator address offset to read from

(dwt_acc_idx_e).

uint16_t sample_offs
The sample index offset within the selected accumulator

to start reading from.

uint16_t num_samples The number of complex samples to read.

dwt_cir_modes_e mode
CIR read mode, see documentation for

dwt_cir_read_mode_e.

typedef enum
{
 DWT_CIR_READ_FULL = 0, // full 48-bit complex samples

 DWT_CIR_READ_LO = 1, // reduced 32-bit complex samples:
 // bits [15:0] for real/imag parts

 DWT_CIR_READ_MID = 2, // reduced 32-bit complex samples:
 // bits [16:1] for real/imag parts

 DWT_CIR_READ_HI = 3, // reduced 32-bit complex samples:
 // bits [17:2] for real/imag parts
} dwt_cir_read_mode_e;

typedef enum
{

DWT_ACC_IDX_IP_M = 0, // Ipatov preamble
DWT_ACC_IDX_STS0_M, // STS1 (1st half in case of PDOA Mode3 used)
DWT_ACC_IDX_STS1_M // STS2 (2nd half in case of PDOA Mode3 used)

} dwt_acc_idx_e;

Return Parameters:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Type Description

int DWT_SUCCESS or DWT_ERROR if wrong parameters were passed

Notes:

5.4.6 dwt_readcir_48b

int dwt_readcir_48b(uint8_t *buffer, dwt_acc_idx_e acc_idx, uint16_t sample_offs, uint16_t
num_samples);

Parameters:

Type Name Description

uint8_t buffer the buffer into which the data will be read

dwt_acc_idx_e acc_idx Index of the accumulator to read data from

uint16_t sample_offs
The number of complex samples to read (each sample is

a 48-bit complex value)

uint16_t num_samples The number of complex samples to read.

Return Parameters:

Notes: the buffer size needs to be >= num_samples*6 bytes

5.4.7 dwt_readpdoa

int16_t dwt_readpdoa (void);

This function is used to read the PDOA result, it will return either the phase difference between

Ipatov and STS POAs, or the two STS POAs, depending on the PDOA mode of operation.

Parameters:

none

Return Parameters:

Type Description

Type Description

int DWT_SUCCESS or DWT_ERROR if wrong parameters were passed

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

int16_t The PDOA result in radians (signed number [1:-11]). To convert to degrees:

pdoa_deg = ((pdoa_rad/1<<11))*180/π

Notes:

5.4.8 dwt_readtdoa

void dwt_readtdoa(uint8_t * tdoa);

This function is used to read the TDOA (Time Difference Of Arrival). The TDOA value that is read from

the register is 41-bits in length. However, 6 bytes (or 48 bits) are read from the register. The

remaining 7 bits at the 'top' of the 6 bytes that are not part of the TDOA value should be set to zero

and should not interfere with rest of the 41-bit value. However, there is no harm in masking the

returned value.

Parameters:

Type Name Description

uint8_t* tdoa Time difference on arrival - buffer of 6 bytes that will be filled

with TDOA value by calling this function.

Return Parameters:

none

Notes:

5.4.9 dwt_read_tdoa_pdoa

void dwt_read_tdoa(dwt_pdoa_tdoa_res_t *result, int index);

This function is used to read the TDOA (Time Difference Of Arrival) and the PDOA (Phase Difference

of Arrival) simultaneously.

Parameters:

Type Name Description

dwt_pdoa_tdoa_res_t* result Pointer to dwt_pdoa_tdoa_res_t structure which into

which PDOA, TDOA and FP_OK will be read.

Int index This is for software compatibility with other products.

Not used with DW3xxx. The value should be set to 0.

Return Parameters:

none

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Notes:

5.4.10 dwt_get_dgcdecision

uint8_t dwt_get_dgcdecision(void);

This function is used to read the DGC_DECISION index when RX_TUNING is enabled, this value is

used to adjust the RX level and FP level estimation.

Parameters:

none

Return Parameters:

Type Description

uint8_t The index value to be used in RX level and FP level formulas.

Notes:

5.4.11 dwt_configeventcounters

void dwt_configeventcounters (int enable);

This function enables event counters (TX, RX, error counters) in the IC.

Parameters:

Type Name Description

int enable
Set to 1 to clear and enable the internal digital counters. Set to

0 to disable.

Return Parameters:

none

Notes:

This function is used to enable counters that count the number of frames transmitted, and received,

and various types of error events.

5.4.12 dwt_readeventcounters

void dwt_readeventcounters (dwt_deviceentcnts_t *counters);

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This function reads the event counters (TX, RX, error counters).

Parameters:

Type Name Description

dwt_deviceentcnts_t * counters Pointer to the device event counters structure.

Typedef struct
{
 uint16_t PHE ; //number of received header errors
 uint16_t RSL ; //number of received frame sync loss events
 uint16_t CRCG ; //number of good CRC received frames
 uint16_t CRCB ; //number of bad CRC (CRC error) received frames
 uint8_t ARFE ; //number of address filter rejections
 uint8_t OVER ; //number of RX overflows (used in double buffer mode)
 uint16_t SFDTO ; //number of SFD timeouts
 uint16_t PTO ; //number of preamble timeouts
 uint8_t RTO ; //number of RX frame wait timeouts
 uint16_t TXF ; //number of transmitted frames
 uint8_t HPW ; //number of half period warnings
 uint8_t CRCE; //number of SPI CRC write errors
 uint16_t PREJ; //number of preamble rejections
 uint16_t SFDD; //number of SFD detection events (only valid in DW3720)
 uint8_t STSE; //number of STS error + warning events

} dwt_deviceentcnts_t ;

Return Parameters:

none

Notes:

This function is used to read the internal counters. These count the number of frames transmitted,

received, and also number of errors received/detected.

Fields Description of fields within the dwt_deviceentcnts_t structure

PHE PHR error counter is a 12-bit counter of PHY header errors.

RSL
RSE error counter is a 12-bit counter of the non-correctable error events

that can occur during Reed Solomon decoding.

CRCG
Frame check sequence good counter is a 12-bit counter of the frames

received with good CRC/FCS sequence.

CRCB
Frame check sequence error counter is a 12-bit counter of the frames

received with bad CRC/FCS sequence.

ARFE
Frame filter rejection counter is an 8-bit counter of the frames rejected by

the receive frame filtering function.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Fields Description of fields within the dwt_deviceentcnts_t structure

OVER

RX overrun error counter is an 8-bit counter of receive overrun events. This

is essentially a count of the reporting of overrun events, i.e. when using

double buffer mode, and the receiver has already received two frames,

and the host has not processed the first one. The receiver will flag an

overrun when it starts receiving a third frame.

SFDT SFD timeout errors counter is a 12-bit counter of SFD timeout error events.

PTO
Preamble detection timeout event counter is a 12-bit counter of preamble

detection timeout events.

RTO
RX frame wait timeout event counter is an 8-bit counter of receive frame

wait timeout events.

TXF
TX frame sent counter is a 12-bit counter of transmit frames sent events.

This is incremented every time a frame is sent.

HPW

Half period warning counter is an 8-bit counter of “Half Period Warning”

events. These relate to late invocation of delayed transmission or

reception functionality.

CRCE SPI CRC write error is an 8-bit counter of “SPI write CRC error” events.

PREJ Preamble rejection events, this is a 12-bit counter.

SFDD SFD detection events, this is a 12-bit counter.

STSE STS error + warning events, this is an 8-bit counter.

5.4.13 dwt_readclockoffset

int16_t dwt_readclockoffset (void);

This function can be used to read the estimated clock offset between the local clock and the remote.

The value is calculated as part of the reception of the frame. It relates to last received frame and

should be read after frame reception. This function is an alternative to dwt_readcarrierintegrator()

which can also be used to calculate clock offset between two devices.

Parameters:

 none

Return Parameters:

file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_readcarrierintegrator

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Type Description

int16_t
Signed 16-bit clock offset value. To convert to ppm the value should be divided by

2^26 and multiplied by 10e6.

Notes:

Positive value means that the local receiver’s clock is running faster than that of the remote

transmitter.

If the CIA is not running, this function will return 0 and cannot be used to read the clock offset.

5.4.14 dwt_readcarrierintegrator

int32_t dwt_readcarrierintegrator(void);

The dwt_readcarrierintegrator() API function reads the receiver carrier integrator value and returns

it as a 32-bit signed value. The receive carrier integrator value is valid at the end of reception of a

frame, (and before the receiver is re-enabled). It reflects the frequency offset of the remote

transmitter with respect to the local receive clock. A positive carrier integrator value means that the

local receive clock is running slower than that of the remote transmitter device.

Parameters:

none

Return Parameters:

Type Description

int32_t Receiver carrier integrator value

Notes:

This dwt_readcarrierintegrator() API may be called after receiving a frame to determine the clock

offset of the remote transmitter the sent the frame. The receive frame should be valid (i.e. with good

CRC) otherwise the clock offset information may be incorrect. The following constants are defined to

allow the returned carrier integrator be converted to a frequency offset in Hertz and from that to a

clock offset in PPM (which depends on the channel centre frequency): FREQ_OFFSET_MULTIPLIER,

and HERTZ_TO_PPM_MULTIPLIER_CHAN_5.

The HERTZ_TO_PPM_xxx multipliers are negative quantities, so when the resultant clock offsets are

positive it means that the local receiver’s clock is running slower than that of the remote transmitter.

Example code:

int32_t ci ;

float clockOffsetHertz ;

float clockOffsetPPM ;

ci = dwt_readcarrierintegrator() ; // Read carrier integrator value

// at 6.81Mb/s data rate convert carrier integrator to clock offset in Hz.

clockOffsetHertz = ci * FREQ_OFFSET_MULTIPLIER;

file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_readcarrierintegrator
file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_readcarrierintegrator

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

// On channel 5 convert this to clock offset in PPM.

clockOffsetPPM = clockOffsetHertz * and HERTZ_TO_PPM_MULTIPLIER_CHAN_5 ;

5.4.15 dwt_readstsquality

int dwt_readstsquality (int16_t *rxSTSQualityIndex, int stsSegment);

This function may be used in any STS mode. It reads the STS quality index and also returns an

indication of whether the STS reception quality is good or bad. After a frame is received the

dwt_readstsquality() API can be used to assess the quality of the STS and hence decide whether to

trust the RX timestamp.

The STS is considered good when the (STS) quality index is greater than a specified threshold value,

which is a percentage of the configured STS length. These thresholds have been set as hard coded

values in the device driver code.

Parameters:

Type Name Description

int16_t* rxSTSQualityIndex
The reported quality index will be stored in this parameter

on function exit.

int stsSegment
This is for software compatibility with other products. Not

used with DW3xxx. The value should be set to 0.

Return Parameters:

Type Description

int This value is the STS quality index minus the threshold value which depends on the

configured STS PRF and the configured STS length. If this return value is > 0 this indicates

that the STS quality is good, however if this return value is negative this indicates that

the received frame has bad quality STS and the resulting timestamps are less

trustworthy

Notes:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.4.16 dwt_readstsstatus

int dwt_readstsstatus(uint16_t* stsStatus, int sts_num);

This function may be used in any STS mode. It will read the STS status register in order to show if

there are any errors present in the STS signals. It can be used in conjunction with the

dwt_readstsquality() API after a packet/frame is received.

A 16-bit buffer is passed into the function and is populated with a ‘1’ or ‘0’ depending on whether

the 9 different STS statuses are set high or not. The remaining upper 7 bits of the 16 bits are ignored.

Only bits 8 through to 0 are set.

Parameters:

Type Name Description

uint16_t* stsStatus
This 16-bit buffer is populated with the various STS statuses

that are described in the CY1_TOA_HI register.

int sts_num

This parameter is used to select which STS packet/frame to

analyse the status of. In regular operation, there will only be

one STS packet/frame to analyse. However, when PDOA

Mode 3 is used, there are two separate STS packets/signals

to analyse. ‘0’ will select the first STS while ‘1’ will select the

second STS.

Return Parameters:

Type Description

int DWT_SUCCESS is returned for good/valid STS status. Otherwise, DWT_ERROR is

returned for a bad STS status.

Notes:

The available STS statuses that are available to read as part of the stsStatus are described in the table

below:

Table 16: stsStatus values

Buffer Bits Default Value Description

stsStatus[8] 0x0 Peak growth rate warning

stsStatus[7] 0x0 ADC count warning

stsStatus[6] 0x0 SFD count warning

stsStatus[5] 0x0 Late first path estimation

stsStatus[4] 0x0 Late coarse estimation

stsStatus[3] 0x0 Coarse estimation empty

stsStatus[2] 0x0 High noise threshold

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

stsStatus[1] 0x0 Non-triangle

stsStatus[0] 0x0 Logistic regression failed

5.4.17 dwt_readctrdbg

uint32_t dwt_readctrdbg(void);

This function is used to read CTR_DBG_ID register. This should be done after packet reception,

please see User Manual for more details on this register.

Parameters:

none

Return Parameters:

Type Description

uint32_t This value of CTR_DBG_ID register

Notes:

5.4.18 dwt_readdgcdbg

uint32_t dwt_readdgcdbg(void);

This function is used to read DGC_DBG_ID register. This should be done after packet reception,

please see User Manual for more details on this register.

Parameters:

none

Return Parameters:

Type Description

uint32_t This value of DGC_DBG_ID register

Notes:

5.4.19 dwt_readCIAversion

uint32_t dwt_readCIAversion(void);

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This function is used to read the internal CIA version. Is generally used in logging/diagnostic

applications.

Parameters:

none

Return Parameters:

Type Description

uint32_t This devices CIA version.

Notes:

5.4.20 dwt_getcirregaddress

uint32_t dwt_getcirregaddress (void);

This function is used to return ACC_MEM_ID register address. Is generally used in logging/diagnostic

applications when logging CIR data following packet reception, see also dwt_readaccdata().

Parameters:

none

Return Parameters:

Type Description

uint32_t The 32-bit address of ACC_MEM_ID register.

Notes:

5.4.21 dwt_get_reg_names

register_name_add_t* dwt_get_reg_names(void);

This function returns a list of register name/value pairs, to enable debug output / logging in external

applications e.g. DecaRanging. The implementation is device specific, i.e. DW3000 device values are

different from DW37XX devices. This API is not enabled unless _DGB_LOG is defined.

Parameters:

none

Return Parameters:

Type Description

register_name_add_t* Pointer to the array of register name/value pairs.

Notes:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.4.22 dwt_nlos_alldiag

uint8_t dwt_nlos_alldiag(dwt_nlos_alldiag_t *all_diag);

This function will read the device’s diagnostics registers regarding IPATOV, STS1, STS2 CIRs. This data

can then be used to help in determining if packet has been received in LOS (line-of-sight) or NLOS

(non-line-of-sight) condition. To help determine/estimate NLOS condition either Ipatov, STS1 or STS2

CIR diagnostics can be used, (or all three).

Parameters:

Type Name Description

dwt_nlos_alldiag_t

*

all_diag Pointer to the all diagnostics structure which will contain

the read data.

typedef struct
{
 uint32_t accumCount ;
 uint32_t F1 ;
 uint32_t F1 ;
 uint32_t F1 ;
 uint32_t cir_power ;
 uint8_t D ;
 dwt_diag_type_e diag_type ;
 uint8_t result ;
} dwt_nlos_alldiag_t ;

Return Parameters:

Type Description

uint8_t DWT_SUCCESS is returned for successful reads of registers. Otherwise, DWT_ERROR is

returned.

Notes:

This function is used to read the received frame diagnostic data. They can be read after a frame is

received. CIA diagnostic level must be configured with the dwt_configciadiag(

DW_CIA_DIAG_LOG_ALL) otherwise the diagnostic registers will read back as zero, please see

DW3XXX User Manual [2] section 8.2.13.

Fields Description of fields within the dwt_nlos_alldiag_t structure

accumCount the number of preamble symbols accumulated when reading Ipatov

diagnostics, or accumulated STS length.

F1 the First Path Amplitude (point 1) magnitude value.

F2 the First Path Amplitude (point 2) magnitude value.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Fields Description of fields within the dwt_nlos_alldiag_t structure

F3 the First Path Amplitude (point 3) magnitude value.

cir_power the Channel Impulse Response Power value.

D the DGC_DECISION, treated as an unsigned integer in range 0 to 7.

diag_type enum to select which diagnostic type to be read: 0x0 for IP_DIAG, 0x1 for

STS_DIAG and 0x2 for STS1_DIAG

result return value to (-1) or (0) on failure or success respectively.

5.4.23 dwt_nlos_ipdiag

void dwt_nlos_ipdiag(dwt_nlos_ipdiag_t *index);

This function will read the IPATOV Diagnostic Registers to get the First Path and Peak Path Index

value. This function is used when signal power is low to determine the signal type (LOS or NLOS).

Hence only Ipatov diagnostic registers are used to determine the signal type.

Parameters:

Type Name Description

dwt_nlos_ipdiag_t

*

index Pointer to the Ipatov diagnostics structure which will

contain the read data.

typedef struct
{
 uint32_t index_fp_u32 ;
 uint32_t index_pp_u32 ;
} dwt_nlos_ipdiag_t;

Return Parameters:

none

Notes:

This function is used to read the received frame Ipatov diagnostic data. They can be read after a

frame is received. CIA diagnostic level must be configured with the dwt_configciadiag(

DW_CIA_DIAG_LOG_ALL) otherwise the diagnostic registers will read back as zero, please see

DW3XXX User Manual [2] section 8.2.13, “IP_DIAG_0” for peak path index and “IP_DIAG_8” for first

path index.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Fields Description of fields within the dwt_nlos_alldiag_t structure

index_fp_u32 the First Path Index.

index_pp_u32 the Peak Path Index.

5.4.24 dwt_capture_adc_samples

void dwt_capture_adc_samples(dwt_capture_adc_t *capture_adc)

This function will capture the adc samples upon reception of a signal.

Parameters:

Type Name Description

dwt_capture_adc_t* capture_adc Pointer to the result structure. See below for detailed

structure.

typedef struct
{
 int8_t *buffer; // pointer to a buffer into which to read
captured ADC results (-1,0,1)
 uint16_t length; // must be divisible by 16, number of ADC results
(-1,0,1) requested (max is 2048x32 / 2) div by 2 because each pair of I-,I+
produces 1 result
 uint16_t sample_start_offset; // must be divisible by 16, offset in the CIR
from which to start reading ADC sample data
 uint8_t thresholds[4]; // returns the ADC thresholds at time of capture,
for I and Q
 uint8_t test_mode_wrap; // returns pointer to array of data of length
2*length (i and q samples)
 } dwt_capture_adc_t;

Return Parameters:

none

Notes:

5.4.25 dwt_read_adc_samples

void dwt_read_adc_samples(dwt_capture_adc_t *capture_adc)

This function reads the captured ADC samples. It must be called following a call to the API

dwt_capture_adc_samples().

Refer to the example 02j for additional information.

Parameters:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Type Name Description

dwt_capture_adc_t* capture_adc Pointer to the result structure. See below for detailed

structure.

typedef struct
{
 int8_t *buffer; // pointer to a buffer into which to read
captured ADC results (-1,0,1)
 uint16_t length; // must be divisible by 16, number of ADC results
(-1,0,1) requested (max is 2048x32 / 2) div by 2 because each pair of I-,I+
produces 1 result
 uint16_t sample_start_offset; // must be divisible by 16, offset in the CIR
from which to start reading ADC sample data
 uint8_t thresholds[4]; // returns the ADC thresholds at time of capture,
for I and Q
 uint8_t test_mode_wrap; // returns pointer to array of data of length
2*length (i and q samples)
 } dwt_capture_adc_t;

Return Parameters:

none

Notes:

5.4.26 dwt_readpllstatus

uint32_t dwt_readpllstatus(void)

Parameters:

 none

Return Parameters:

Type Description

 uint32_t
32-bit containing the value of the PLL status register (only bits
[14:0] are valid)

The status bits are defined as follows:

• PLL_STATUS_LD_CODE_BIT_MASK - 0x1f00U // Counter-based lock-detect status

indicator

• PLL_STATUS_XTAL_AMP_SETTLED_BIT_MASK - 0x40U // Status flag from the XTAL

indicating that the amplitude has settled

• PLL_STATUS_VCO_TUNE_UPDATE_BIT_MASK - 0x20U // Flag to indicate that the

COARSE_TUNE codes have been updated by cal and are ready to read

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

• PLL_STATUS_PLL_OVRFLOW_BIT_MASK - 0x10U // PLL calibration flag

indicating all VCO_TUNE values have been cycled through

• PLL_STATUS_PLL_HI_FLAG_BIT_MASK - 0x8U // VCO voltage too high indicator

(active-high)

• PLL_STATUS_PLL_LO_FLAG_N_BIT_MASK - 0x4U // VCO voltage too low

indicator (active-low)

• PLL_STATUS_PLL_LOCK_FLAG_BIT_MASK - 0x2U // PLL lock flag

• PLL_STATUS_CPC_CAL_DONE_BIT_MASK - 0x1U // PLL cal done and PLL locked

Notes:

5.4.27 dwt_calculate_rssi

 int dwt_calculate_rssi(const dwt_cirdiags_t *diag, dwt_acc_idx_e acc_idx, int16_t
*signal_strength)

This API will return the RSSI - UWB channel power. This API must be called only after initializing and

configuring the driver and receiving some Rx data packets.

Parameters:

Type Name Description

dwt_cirdiags_t

*

diag Diagnostics for a particular accumulator

dwt_acc_idx_e acc_idx Accumulator (see dwt_acc_idx_e)

int16_t * signal_strength Output parameter, signal strength in q8.8 format

Return Parameters:

Type Description

 int
Returns DWT_SUCCESS on success and DWT_ERROR on invalid
parameters

Notes:

5.4.28 dwt_calculate_first_path_power

 int dwt_calculate_first_path_power(const dwt_cirdiags_t *diag, dwt_acc_idx_e acc_idx, int16_t
*signal_strength)

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This API will return the First path signal power. This API must be called only after initializing and

configuring the driver and receiving some Rx data packets.

Parameters:

Type Name Description

dwt_cirdiags_t * diag Diagnostics for a particular accumulator

dwt_acc_idx_e acc_idx Accumulator (see dwt_acc_idx_e)

int16_t * signal_strength Output parameter, signal strength in q8.8 format

Return Parameters:

Type Description

 int
Returns DWT_SUCCESS on success and DWT_ERROR on invalid
parameters

Notes:

5.5 Sleep/Wakeup APIs

5.5.1 dwt_calibratesleepcnt

uint16_t dwt_calibratesleepcnt (void);

The dwt_calibratesleepcnt() function calibrates the low-power oscillator. It returns the number of

XTAL cycles per one low-power oscillator cycle.

Parameters:

none

Return Parameters:

Type Description

uint16_t This is number of XTAL cycles per one low-power oscillator cycle.

Notes:

The IC’s internal L-C oscillator has an oscillating frequency which is between approximately 15,000

and 34,000 Hz depending on process variations within the IC and on temperature and voltage. To do

more precise setting of sleep times its calibration is necessary. See also example code given under

the dwt_configuresleepcnt() function. This function need to be run before

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

dwt_configuresleepcnt() in order to ascertain the counter units required to calculated the sleep

time.

5.5.2 dwt_configuresleepcnt

void dwt_configuresleepcnt (uint16_t sleepcnt);

The dwt_configuresleepcnt() function configures the sleep counter to a new value. This function needs

to be run before dwt_entersleep() if sleep mode is used.

Parameters:

Type Name Description

uint16_t sleepcnt This is the sleep count value to set. The high 16-bits of 28-bit

counter. See note below for details of units and code example for

configuration detail.

Return Parameters:

none

Notes:

The units of the sleepcnt parameter depend on the oscillating frequency of the IC’s internal L-C

oscillator, which is between approximately 15,000 and 34,000 Hz depending on process variations

within the IC and on temperature and voltage. This frequency can be measured using the

dwt_calibratesleepcnt() function so that sleep times can be more accurately set.

The sleepcnt is actually setting the upper 16 bits of a 28-bit counter, i.e. the low order bit is equal to

4096 counts. So, for example, if the L-C oscillator frequency is 15000 Hz then programming the

sleepcnt with a value of 24 would yield a sleep time of 24 × 4096 ÷ 15000, which is approximately 6.55

seconds.

Example code:

This example shows how to calibrate the low-power oscillator and set the sleep time to 10 seconds.

Double t;

uint32_t sleep_time = 0;

uint16_t lp_osc_cal = 0;

uint16_t sleepTime16;

// Measure low power oscillator frequency

lp_osc_cal = dwt_calibratesleepcnt();

// calibrate low power oscillator

// the lp_osc_cal value is number of XTAL cycles in one cycle of LP OSC

// to convert into seconds (38.4 MHz => 1/38.4 MHz ns)

// so to get a sleep time of 10s we need a value of:

// 10 / period and then >> 12 as the register holds upper 16-bits of 28-bit

// counter

t = ((double) 10.0 / ((double) lp_osc_cal/38.4e6));

sleep_time = (int) t;

sleepTime16 = sleep_time >> 12;

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

dwt_configuresleepcnt(sleepTime16); //configure sleep time

5.5.3 dwt_configuresleep

void dwt_configuresleep(uint16_t mode, uint8_t wake);

The dwt_configuresleep() function may be called to configure the activity of DEEPSLEEP or SLEEP

modes. Note TX and RX configurations are maintained in DEEPSLEEP and SLEEP modes so that upon

"waking up" there is no need to reconfigure the devices before initiating a TX or RX, although as the

TX data buffer is not maintained the data for transmission will need to be written before initiating

transmission.

Parameters:

Type Name Description

uint16_t mode A bit mask which configures which configures the SLEEP parameters,

see Table 17.

uint8_t wake A bit mask that configures the wakeup event. As defined in Table 18

Return Parameters:

none

Notes:

This function is called to configure the sleep and on wake parameters.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Table 17: Bitmask values for dwt_configuresleep() mode bit mask

Event Bit mask Description

DWT_PGFCAL 0x0800 On wake-up, run the PGF calibration.

NOTE: on DW3720 – this has the opposite function.
Setting this bit will NOT run PGF calibration on
wakeup. Thus the API clears this bit if it is set, as
most host applications need the PGF calibration to
run and there is no harm in running this even for TX
only applications, i.e. it will not speed up wake -up
time.

DWT_GOTORX 0x0200 On wake-up, go to the RX state via IDLE.

DWT_GOTOIDLE 0x0100 On wake-up, go to the IDLE state with PLL calibration.

DWT_SEL_GEAR 0x0040 |
0x0080

On wake-up, select which gear table to load.

DWT_LOADGEAR 0x0020 On wake-up, load the gear table specified by
DWT_SEL_GEAR.

DWT_LOADLDO 0x0010 On wake-up, load the LDO tune codes from OTP.

DWT_LOADDGC 0x0008 On wake-up, populate the DGC table from settings in
OTP.

DWT_LOADBIAS 0x0004 On wake-up, load the bias settings from OTP.

DWT_RUNSAR 0x0002

On Wake-up run the (temperature and voltage) ADC.
Setting this bit will cause the automatic initiation of
temperature and input battery voltage measurements
when the IC wakes from DEEPSLEEP or SLEEP states.
The sampled temperature value may be accessed using
the dwt_readwakeuptemp() function and, the sampled
battery voltage value may be accessed using the
dwt_readwakeupvbat() function

DWT_CONFIG 0x0001 Restore saved configurations.

Table 18: Bitmask values for dwt_configuresleep() wake bit mask

Event Bit mask Description

DWT_SLP_CNT_RPT 0x40 sleep counter loop after expiration.

DWT_PRESERVE_SLP 0x20 The sleep enable (bit 0) will be restored after wakeup.

DWT_WAKE_WK 0x10 Wakeup on chip select, SPICSn, line.

DWT_WAKE_CS 0x8 Wakeup on chip select, SPICSn, line.

DWT_BR_DET 0x4 Enable brownout detector during SLEEP/DEEPSLEEP

DWT_SLEEP 0x2
Device will use DEEPSLEEP mode unless this is set, then it will
use SLEEP mode.

DWT_SLP_EN 0x1
This is the sleep enable configuration bit. This needs to be
set to enable the SLEEP/DEEPSLEEP functionality.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

The DEEPSLEEP state is the lowest power state except for the OFF state. In DEEPSLEEP all internal

clocks and LDO are off and the IC consumes approximately 100 nA. To wake the IC from DEEPSLEEP

an external pin needs to be activated for the “power-up duration” approximately 300 to 500 μs. This

can be either be the SPICSn line pulled low or the WAKEUP line driven high. The duration quoted

here is dependent on the frequency of the low power oscillator (enabled as the IC comes out of

DEEPSLEEP) which will vary between individual IC and will also vary with changes of battery voltage

and different temperatures. To ensure the IC reliably wakes up it is recommended to either apply the

wakeup signal until the 500 μs has passed, or to use the SPIRDY event status bit (in Register file: 0x0F

– System Event Status Register) to drive the IRQ interrupt output line high to confirm the wake-up.

Once the IC has detected a “wake up” it progresses into the WAKEUP state. While in DEEPSLEEP

power should not be applied to GPIO, SPICLK or SPIMISO pins as this will cause an increase in leakage

current.

There are four mechanisms to awaken the IC:

a) By driving the WAKEUP pin (pin 23) high for a period > 500 µs (as per the Data Sheet [1])

b) Driving SPICSn low for a period > 500 µs. This can also be achieved by an SPI read (of register 0,

offset 0) of sufficient length

c) If the IC is sleeping using its own internal sleep counter it will be awoken when the timer expires.

This is configured by setting the wake parameter to 0x10 (+ 0x1 – to enable sleep).

d) By resetting the device, setting RSTn pin to low.

Example code:

This example shows how to configure the device to enter DEEPSLEEP mode after some event e.g.

frame transmission. The mode parameter into the dwt_configuresleep() function has value 0x01

which configures DW3720 to load IC configurations. The wake parameter value, 0x29, which enables

the sleeping with SPICSn as the wakeup signal, and also sets the preserve sleep bit setting.

dwt_configuresleep(0x01, 0x29); //configure sleep and wake parameters

// then ... later... after some event we can instruct the IC to go into

// DEEPSLEEP mode

dwt_entersleep(); //go to sleep

/// then ... later ... when we want to wake up the device

dwt_spicswakeup(buffer, len);

// buffer is declared locally and needs to be of length (len) which must be

// sufficiently long keep the SPI CSn pin low for at least 500us this

// depends on SPI speed – see also dwt_spicswakeup() function

5.5.4 dwt_entersleep

void dwt_entersleep(int idle_rc);

This function is called to put the device into DEEPSLEEP or SLEEP mode.

NOTE: dwt_configuresleep() needs to be called before calling this function to configure the sleep and

on wake parameters.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

(Before entering DEEPSLEEP, the device should be programmed for TX or RX, then upon “waking up"

the TX/RX settings will be preserved and the device can immediately perform the desired action

TX/RX see dwt_configuresleep()).

Parameters:

Type Name Description

int idle_rc If this is set to DWT_DW_IDLE_RC, the auto INIT2IDLE bit will be

cleared prior to going to sleep. Thus, after wake-up, device will stay

in IDLE_RC state.

Return Parameters:

none

Notes:

This function is called to enable (put the device into) DEEPSLEEP mode. The dwt_configuresleep()

should be called first to configure the sleep/wake parameters. (See code example in the

dwt_configuresleep() function).

With DW3000 devices, it is recommended to use DWT_DW_IDLE_RC rather than DWT_DW_IDLE to

speed up wake up time.

5.5.5 dwt_entersleepaftertx

void dwt_entersleepaftertx (int enable);

The dwt_entersleepaftertx() function configures the “enter sleep after transmission completes” bit.

If this is set, the device will automatically go to DEEPSLEEP/SLEEP mode after a TX event.

Parameters:

Type Name Description

int enable If set the “enter DEEPSLEEP/SLEEP after TX” bit will be set, else it will

be cleared.

Return Parameters:

none

Notes:

When this mode of operation is enabled the IC will automatically transition into SLEEP or DEEPSLEEP

mode (depending on the sleep mode configuration set in dwt_configuresleep()) after transmission

of a frame has completed so long as there are no unmasked interrupts pending. See

dwt_setinterrupt() for details of controlling the masking of interrupts.

file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_configuredeepsleep

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

To be effective dwt_entersleepaftertx() function should be called before dw_starttx() function and

then upon TX event completion the device will enter sleep mode.

Example code:

This example shows how to configure the device to enter DEEP_SLEEP mode after frame transmission.

dwt_configuresleep(0x01, 0x25); //configure the on-wake parameters

//(upload the IC config settings)

dwt_entersleepaftertx(1); //configure the auto go to sleep

 //after TX

// disable TX interrupts

dwt_setinterrupt(

DWT_INT_TXFRS_BIT_MASK | \

DWT_INT_TXPHS_BIT_MASK | \

DWT_INT_TXPRS_BIT_MASK | \

DWT_INT_TXFRB_BIT_MASK,

0, DWT_DISABLE_INT

);

// won’t be able to enter sleep if any other unmasked events are pending

dwt_writetxdata(frameLength,DataBufferPtr,0); // write the frame data at

//offset 0

dwt_writetxfctrl(frameLength,0,0) // set the frame control register

dwt_starttx(DWT_START_TX_IMMEDIATE); // send the frame immediately

// when TX completes the IC will go to sleep....then…..later...when we

// want to wake up the device

dwt_spicswakeup(buffer, len);

// buffer is declared locally and needs to be of length (len) which must be

// sufficiently long keep the SPI CSn pin low for at least 500us this

// depends on SPI speed – see also dwt_spicswakeup() function

5.5.6 dwt_entersleepafter

void dwt_entersleepafter (int event_mask);

The dwt_entersleepafter() function makes the device automatically enter deep sleep or sleep mode

after a frame transmission and/or reception.

Parameters:

Type Name Description

int event_mask Bitmask to go to sleep after:

DWT_TX_COMPLETE; to configure the device to enter sleep or deep

sleep after TX;

DWT_RX_COMPLETE; to configure the device to enter sleep or deep

sleep after RX.

file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_starttx

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Return Parameters:

none

Notes:

The IC will only transition to sleep or deep sleep mode if no interrupt events are active. See

dwt_setinterrupt() for details of controlling the masking of interrupts.

To be effective the dwt_entersleepafter() function should be called before calling the dw_starttx() or

dwt_rxenable() function and then upon TX or RX event completion the device will enter sleep mode.

Example code:

This example shows how to configure the device to enter DEEP_SLEEP mode after frame reception.

dwt_configuresleep(0x01, 0x25); // configure the on-wake parameters

// (upload the IC config settings)

dwt_entersleepafter(DWT_RX_COMPLETE); // configure the auto go to sleep

 // after RX

dwt_setinterrupt(DWT_INT_RX, 0, DWT_DISABLE_INT); //disable TX interrupt

// won’t be able to enter sleep if any other unmasked events are pending

dwt_setrxtimeout(0);

dwt_rxenable(); // Receive a frame and go to sleep after reception

5.5.7 dwt_spicswakeup

int dwt_spicswakeup (uint8_t *buff, uint16_t length);

The dwt_spicswakeup() function uses an SPI read to wake up the IC from SLEEP or DEEPSLEEP.

Parameters:

Type Name Description

uint8_t* buff This is the pointer to a buffer where the data from SPI read will be

read into.

uint16_t length This is the length of the input buffer.

Return Parameters:

Type Description

int Return values can be either DWT_SUCCESS = 0 or DWT_ERROR = -1.

Notes:

file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_starttx

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

When the IC is in DEEPSLEEP or SLEEP mode, this function can be used to wake it up, assuming SPICSn

has been configured as a wakeup signal in the dwt_configuresleep()) call. This is done using an SPI read.

The duration of the SPI read, keeping SPICSn low, has to be long enough to provide the low for a period

> 500 µs.

See example code below.

Example code:

This example shows how to configure the device to enter DEEPSLEEP mode after some event e.g.

frame transmission.

dwt_configuresleep(0x01, 0x25); //configure sleep and wake parameters

// then ... later....after some event we can instruct the IC to go into

// DEEPSLEEP mode

dwt_entersleep(); //go to sleep

// then ... later ... when we want to wake up the device

dwt_spicswakeup(buffer, len);

// buffer is declared locally and needs to be of length (len) which must be

// sufficient to keep the SPI CSn pin low for at least 500us This depends

// on SPI speed

5.5.8 dwt_readwakeuptemp

uint8_t dwt_readwakeuptemp(void);

This function reads the IC temperature sensor value that was sampled during IC wake-up. This

should be only used with DW37xx as it does not work on DW3000 – see DW3000 errata.

Parameters:

none

Return Parameters:

Type Description

uint8_t The 8-bits are temperature value sampled at wake-up event.

Notes:

This function may be used to read the temperature sensor value that was sampled by the IC on wake

up, assuming the DWT_TANDV bit in the mode parameter was set in a call to dwt_configuresleep()

before entering sleep mode. If the wakeup sampling of the temperature sensor was not enabled

then the value returned by dwt_readwakeuptemp() will not be valid.

5.5.9 dwt_readwakeupvbat

uint8_t dwt_readwakeupvbat(void);

This function reads the battery voltage sensor value that was sampled during IC wake-up.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Parameters:

none

Return Parameters:

Type Description

uint8_t The 8-bits are voltage value sampled at wake-up event.

Notes:

This function may be used to read the battery voltage sensor value that was sampled by the IC on

wake up, assuming the DWT_TANDV bit in the mode parameter was set in the call to

dwt_configuresleep() before entering sleep mode. If the wakeup sampling of the battery voltage

sensor was not enabled then the value returned by dwt_readwakeupvbat() will not be valid.

5.5.10 dwt_wakeup_ic

void dwt_wakeup_ic(void);

This function will wake up the device by toggling the correct IO pin. DW3xxx SPI_CS or WAKEUP pins

can be used for this.

Parameters:

none

Return Parameters:

none

Notes:

This function is platform dependent. This is due to the fact that each platform may configure IO pins

differently. Please view the source code of this function to see how it can be ported to other

platforms.

5.5.11 dwt_ds_en_sleep

void dwt_ds_en_sleep(dwt_host_sleep_en_e host_sleep_en);

With this function, each host can prevent the device going into SLEEP/DEEPSLEEP state. By default, it

is possible for either host to place the device into SLEEP/DEEPSLEEP. This may not be desirable, thus

a host once it is granted access can set a SLEEP_DISABLE bit in the register to prevent the other host

from putting the device to sleep once it gives up its access. This does not exist in DW3000.

Parameters:

Type Name Description

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

dwt_host_sleep_en_e host_sleep_en Sets or clears the bit to prevent or allow the device to

go to sleep respectively.

Valid values are as follows:

HOST_EN_SLEEP (0x00): clears the bit allowing the

device to go to sleep.

HOST_DIS_SLEEP (0x60): sets the bit to prevent the

device from going to sleep.

Return Parameters:

 None

Notes:

5.6 ISR and callback APIs

5.6.1 dwt_setcallbacks

void dwt_setcallbacks(dwt_callbacks_s *callbacks);

This function is used to configure the TX/RX callback function pointers, and SPI CRC error callback

function pointer. These callback functions will be called when TX, RX or SPI error events happen and

the dwt_isr() is called to handle them (See dwt_isr() description below for more details about the

events and associated callback functions).

Parameters:

Type Name Description

dwt_callbacks_s callbacks Pointer to the structure containing all the callbacks

The dwt_callbacks_s is made of the following fields:

Type Name Description

dwt_cb_ t cbTxDone
Function pointer for the cbTxDone function. See type description

below.

dwt_cb _t cbRxOk
Function pointer for the cbRxOk function. See type description

below.

dwt_cb _t cbRxTo
Function pointer for the cbRxTo function. See type description

below.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Type Name Description

dwt_cb _t cbRxErr
Function pointer for the cbRxErr function. See type description

below.

dwt_cb_t cbSPIErr
Function pointer for the cbSPIErr function. See type description

below.

dwt_cb_t cbSPIRdy
Function pointer for the cbSPIRdy function. See type description

below.

dwt_spierrcb_t cbSPIRDErr
Function pointer for the cbSPIRDErr function. See type description

below.

dwt_cb_t cbDualSPIEv
Function pointer for the cbDualSPIEv function. See type

description below.

dwt_cb_t cbFrmRdy Only needed for compatibility with QM35xxx devices

dwt_cb_t cbCiaDone Only needed for compatibility with QM35xxx devices

dwt_cb_t devErr Only needed for compatibility with QM35xxx devices

dwt_cb_t cbSysEvent Only needed for compatibility with QM35xxx devices

// Call-back type for all events

typedef void (*dwt_cb_t)(const dwt_cb_data_t *);

// TX/RX call-back data

typedef struct

{

uint32_t status; //initial value of register as ISR is entered

uint16_t status_hi; //SYS_STATUS_HI_ID register as read at entry to dwt_isr

uint16_t datalength; //length of frame

uint8_t rx_flags; //RX frame flags – see dwt_cb_data_rx_flags_e

uint8_t dss_stat; //Dual SPI status register

struct dwchip_s *dw //pointer to local device structure

}dwt_cb_data_t;

typedef enum

{

 DWT_CB_DATA_RX_FLAG_RNG = 0x01, // Ranging bit

 DWT_CB_DATA_RX_FLAG_ND = 0x02, // No data mode

 DWT_CB_DATA_RX_FLAG_CIA = 0x04, // CIA done

 DWT_CB_DATA_RX_FLAG_CER = 0x08, // CIA error

 DWT_CB_DATA_RX_FLAG_CPER = 0x10, // STS error

} dwt_cb_data_rx_flags_e;

Return Parameters:

none

Notes:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This function is used to set up the TX and RX events call-back functions.

Fields Description of fields within the dwt_cb_data_t structure

status The status parameter holds the initial value of the SYS_STATUS_ID register as

read on entry into the ISR.

status_hi The status_hi parameter holds the initial value of the SYS_STATUS_HI_ID

register as read on entry into the ISR.

datalength The datalength parameter specifies the length of the received frame. Only

valid for RX events and only if not SP3 packet.

rx_flags The rx_flags parameter is a bit field value valid only for received frames. It is

interpreted as follows:

- Bit 0: 1 if the ranging bit was set for this frame, 0 otherwise.

- Bit 1: 1 if no data STS mode (no RX data but timestamps are valid)

- Bit 2: CIA done (the RX timestamps and diagnostics are valid)

- Bit 3: CIA error (the RX timestamps are not valid)

- Bit 4: STS error (the STS status is a non-zero value)

- 5-7: Reserved.

See dwt_cb_data_rx_flags_e above.

dss_stat The dss_stat parameter specifies the dual SPI status register where bits [1:0]

specify whether SPI1 or SPI2 are available, i.e. have not been reserved by a

host.

*dw The *dw parameter is a pointer to the local device structure.

For more detailed information on interrupt events and especially for details on which status events

trigger each one of the different callback functions, see dwt_isr() function description below.

5.6.2 dwt_setinterrupt

void dwt_setinterrupt(uint32_t bitmask_lo, uint32_t bitmask_hi, dwt_INT_options_e
INT_options);

This function sets the events which will generate an interrupt. The bit mask parameters may be used

to enable or disable single events or multiple events at the same time. Table 19 shows the main

events that are typically configured as interrupts:

Parameters:

Type Name Description

uint32_t bitmask_lo
This specifies the events being acted on by this API. See

Table 19 for the relevant events.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Type Name Description

uint32_t bitmask_hi

This specifies the additional events being acted on by this

API. For more information, please see details of the

SYS_ENABLE_HI register in the DW3xxx User Manual [2].

dwt_INT_options_e INT_options

The operation parameter selects the operation being

applied to the selected event bits. This can be:

DWT_DISABLE_INT (0) = clear only selected bits (other bits

settings unchanged).

DWT_ENABLE_INT (1) = set only selected bits (other bits

settings unchanged).

DWT_ENABLE_INT_ONLY (2) = set only selected bits, force

other bits to clear.

DWT_ENABLE_INT_DUAL_SPI (3) = set only selected bits

(other bits settings unchanged) for dual SPI mode.

DWT_ENABLE_INT_ONLY_DUAL_SPI (4) = set only selected

bits, force other bits to clear for dual SPI mode.

Return Parameters:

none

Notes:

This function is called to enable/disable events for which to generate interrupts.

For the transmitter, it is generally sufficient to enable the SY_STAT_TFRS event which will trigger

when a frame has been sent. For the receiver, it is generally sufficient to enable the good frame

reception event (DWT_INT_RFCG) and also any error events which will disable the receiver.

Table 19: bitmask_lo values for control of common event interrupts

Event Bit mask Description

DWT_INT_IRQS_BIT_MASK 0x00000001 Interrupt set.

DWT_INT_CP_LOCK_BIT_MASK 0x00000002 PLL locked.

DWT_INT_SPICRCE_BIT_MASK 0x00000004

SPI write CRC error event. This is set when IC
detects a mismatch between the 8-bit CRC set
by the host at the end of the host SPI write
transaction and the CRC calculated by the IC.
When SPI CRC mode is enabled this may be
used to detect SPI errors. The event bit is
always set when SPI CRC mode is disabled,
therefore the mask should not be set to avoid
this causing interrupts.

DWT_INT_AAT_BIT_MASK 0x00000008 Automatic ACK transmission pending.

DWT_INT_TXFRB_BIT_MASK 0x00000010 Frame transmission begins.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Event Bit mask Description

DWT_INT_TXPRS_BIT_MASK 0x00000020 Frame preamble sent.

DWT_INT_TXPHS_BIT_MASK 0x00000040 Frame PHR sent.

DWT_INT_TFRS_BIT_MASK 0x00000080
Transmit Frame Sent: This is set when the
transmitter has completed the sending of a
frame.

DWT_INT_RXPRD_BIT_MASK 0x00000100 Preamble detected.

DWT_INT_RXSFDD_BIT_MASK 0x00000200 SFD detected.

DWT_INT_CIADONE_BIT_MASK 0x00000400 CIA done.

DWT_INT_RXPHD_BIT_MASK 0x00000800 PHY header detected.

DWT_INT_RPHE_BIT_MASK 0x00001000
Receiver PHY Header Error: Reception
completed, Frame Error.

DWT_INT_RXFR_BIT_MASK 0x00002000
Receiver Frame Good: A frame (of any
type/mode) has been received and is good.

DWT_INT_RFCG_BIT_MASK 0x00004000
Receiver FCS Good: The CRC check has
matched the transmitted CRC, frame should
be good.

DWT_INT_RFCE_BIT_MASK 0x00008000
Receiver FCS Error: The CRC check has not
matched the transmitted CRC, frame has
some error.

DWT_INT_RFSL_BIT_MASK 0x00010000
Receiver Frame Sync Loss: The RX lost signal
before frame was received, indicates
excessive Reed Solomon decoder errors.

DWT_INT_RFTO_BIT_MASK 0x00020000
Receiver Frame Wait Timeout: The RX_FWTO
time period expired without a Frame RX.

DWT_INT_CIAERR_BIT_MASK 0x00040000 CIA error.

DWT_INT_VWARN_BIT_MASK 0x00080000 Brownout event detected.

DWT_INT_RXOVRR_BIT_MASK 0x00100000
RX overrun event when double RX buffer in
use.

DWT_INT_RXPTO_BIT_MASK 0x00200000 Preamble detection timeout

DWT_INT_SPIRDY_BIT_MASK 0x00800000 SPI ready flag.

DWT_INT_RCINIT_BIT_MASK 0x01000000 Device has entered IDLE_RC.

DWT_INT_PLL_HILO_BIT_MASK 0x02000000 PLL calibration flag.

DWT_INT_RXSTO_BIT_MASK 0x04000000 SFD timeout.

DWT_INT_HPDWARN_BIT_MASK 0x08000000
Half period warning flag when delayed TX/RX
is used.

DWT_INT_ARFE_BIT_MASK 0x20000000 ARFE – frame rejection status.

DWT_INT_CPERR_BIT_MASK 0x10000000 STS quality warning/error.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.6.3 dwt_setinterrupt_db

void dwt_setinterrupt_db(uint8_t bitmask, dwt_INT_options_e INT_options);

This function sets the events which enables the specified double RX buffer to trigger an interrupt.

This function sets the events which will generate an interrupt. The bit mask parameter may be used

to enable or disable single events or multiple events at the same time. Table 20 shows the main

events that are typically configured as interrupts:

Parameters:

Type Name Description

Uint8_t bitmask
This specifies the events being acted on by this API. See

Table 20 for the relevant events.

dwt_INT_options_e INT_options

The operation parameter selects the operation being

applied to the selected event bits. This can be:

DWT_DISABLE_INT (0) = clear only selected bits (other bits

settings unchanged).

DWT_ENABLE_INT (1) = set only selected bits (other bits

settings unchanged).

DWT_ENABLE_INT_ONLY (2) = set only selected bits, force

other bits to clear.

DWT_ENABLE_INT_DUAL_SPI (3) = set only selected bits

(other bits settings unchanged) for dual SPI mode.

DWT_ENABLE_INT_ONLY_DUAL_SPI (4) = set only selected

bits, force other bits to clear for dual SPI mode.

Return Parameters:

none

Notes:

This function is only available in DW37XX devices.

This function is called to enable/disable events for which to generate interrupts.

Table 20: bitmask values for control of RX buffer event interrupts

Event Bit mask Description

DWT_DB_INT_RXFCG0_EN 0x01 Frame CC good in RX buffer 0

DWT_DB_INT_RXFR0_EN 0x02 Frame ready in RX buffer 0

DWT_DB_INT_RXCIADONE0_EN 0x04 CIA done for frame in RX buffer 0

DWT_DB_INT_CPERR0_EN 0x08 STS quality warning/error in RX buffer 0

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Event Bit mask Description

DWT_DB_INT_RXFCG1_EN 0x10 Frame CC good in RX buffer 1

DWT_DB_INT_RXFR1_EN 0x20 Frame ready in RX buffer 1

DWT_DB_INT_RXCIADONE1_EN 0x40 CIA done for frame in RX buffer 1

DWT_DB_INT_CPERR1_EN 0x80 STS quality warning/error in RX buffer 1

5.6.4 dwt_ds_setinterrupt_SPIxavailable

int dwt_ds_setinterrupt_SPIxavailable(dwt_spi_host_e spi_num, dwt_INT_options_e int_set);

With this API the host on either SPI1 or SPI2 can enable/disable whether the interrupt is raised upon

SPI1MAVAIL or SPI2MAVAIL event. See User Manual [2] for more details on dual SPI operation.

Parameters:

Type Name Description

dwt_spi_host_e spi_num
This parameter should be set to either DWT_HOST_SPI1 or

DT_HOST_SPI2.

dwt_INT_options_e Int_set

The operation parameter selects the operation being

applied to the selected event bits. This can be:

DWT_DISABLE_INT (0) = clear only selected bits (other bits

settings unchanged).

DWT_ENABLE_INT (1) = set only selected bits (other bits

settings unchanged).

Return Parameters:

none

Notes:

This function is only available in DW37XX devices.

5.6.5 dwt_checkirq

uint8_t dwt_checkirq(void);

This API function checks the interrupt line status.

Parameters:

 none

Return Parameters:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Type Description

uint8_t 1 if the IC interrupt line is active (IRQS bit in STATUS register is set), 0 otherwise.

Notes:

This function is typically intended to be used in a PC based system using (Cheetah or ARM) USB to SPI

converter, where there can be no interrupts. In this case we can operate in a polled mode of

operation by checking this function periodically and calling dwt_isr() if it returns 1.

5.6.6 dwt_isr

void dwt_isr(void);

This function processes device events, (e.g. frame reception, transmission). It is intended that this

function be called as a result of an interrupt from the IC – the mechanism by which this is achieved is

target specific. Where interrupts are not supported this function can be called from a simple

runtime loop to poll the status register and take the appropriate action, but this approach is not as

efficient and may result in reduced performance depending on system characteristics.

The dwt_isr() function makes use of call-back functions in the application to indicate that received

data is available to the upper layers (application) or to indicate when frame transmission has

completed. The dwt_setcallbacks() API function is used to configure the call back functions.

The dwt_isr() function reads the status register and recognises the following events:

Table 21: List of events handled by the dwt_isr() function and signalled in call-backs

Event Corresponding status
register event flags

Comments

Reception of a good
frame

(cbRxOk callback)

RXFCG This means that a frame with a good CRC has
been received and that the RX data and the
frame receive time stamp can be read.

Frame length and frame control information are
reported through “datalength” and “fctrl” fields
of the dwt_cb_data_t structure.

The value of the Ranging bit (from the PHY
header), is reported through RNG bit in the
rx_flags field of the dwt_cb_data_t structure.

When automatic acknowledgement is enabled
(via the dwt_enableautoack() API function), if a
frame is received with the ACK request bit set
then the AAT bit will be set in the “status” field
of the dwt_cb_data_t structure, indicating that
an ACK is being sent (or has been sent).

Reception of good
STS Mode 3 (no
data) packet

(cbRxOk callback)

RXFR Since the STS mode 3 (no data) packet contains
no PHY payload, the way in which a ‘good’
packet is checked for is different. The required
event for this callback is a simplified version of
the callback described above (for a good frame).

file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_enableautoack

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Event Corresponding status
register event flags

Comments

There is no CRC and no RX data to be checked in
this case. Nor is the any frame length or control
to cater for. All that is required is the RXFR bit
set and STS mode 3 is configured.

Reception timeout

(cbRxTo callback)

RXRFTO/RXPTO These events indicate that a timeout occurred
while waiting for an incoming frame.

If needed, the “status” field of the
dwt_cb_data_t structure can be examined to
distinguish between these events.

Reception error

(cbRxErr callback)

RXRXPHE/RXSFDTO/

RXRFSL/RXRFCE/

LDEERR/AFFREJ/

LCSSERR

This means that an error event occurred while
receiving a frame.

If needed, the “status” field of dwt_cb_data_t
structure can be examined to determine which
event caused the interrupt.

Transmission of a
frame completed

(cbTxDone callback)

TXFRS This means that the transmission of a frame is
complete and that the transmit time stamp can
be read.

SPI write CRC error
detected

(cbSPIErr callback)

SPICRCERR This means that the CRC byte written by the host
as the last byte of SPI write transaction did not
match the CRC generated by the IC on the header
and data bytes. This will only be generated when
IC is using SPI CRC mode.

Device powered on
or wake-up

(cbSPIRdy callback)

SPIRDY/ RCINIT This callback is used to check if the device has
powered up or has woken up from a sleep state.
It checks for the SPI to be ready and that the
device has gone from wakeup to the RXINIT state.

Dual SPI available
event

(cbDualSPIEv)

SEMA_SPI1_AVAIL/
SEMA_SPI2_AVAIL

This callback is used to let the host know that the
SPI availability and semaphore status e.g.
following a wake up event when dual-SPI is used.
This is only valid for DW37xx devices.

When an event is recognised and processed the status register bit is cleared to clear the event

interrupt. Figure 7 shows the dwt_isr() function flow diagram.

Parameters:

none

Return Parameters:

none

Notes:

The dwt_isr() function should be called from the microprocessor’s interrupt handler that is used to

process the IC interrupt.

It is recommended to read the User Manual [2], especially chapters 3, 4, and 5 to become familiar

with IC events and their operation.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

In addition, if the microprocessor is not fast enough and two events are set in the status register, the

order in which they are processed is as shown in Figure 7. This may not be the order in which they

were triggered.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Figure 7: Interrupt handling

Read state of DW IRQ line input to microprocessor to

check whether a DW3000 IRQ is pending

Call dwt_isr() The device driver s interrupt

handler routine

Read the status (SYS_STATUS) register to

check which event triggered interrupt

DWT_INT_RFCG

bit set ?

NO

YES

NO

YES

NO

YES

NO

Clear the event and call RX OK call-back

Clear the event and call RX ERR call-back
YES

DWT_INT_RFTO or

DWT_INT_RXPTO

 bits set ?

Clear the event and call RX TO call-back

DWT_INT_TFRS

 bit set ?
Clear the event and call TX DONE call-back

Any RX error

 bits set ?

NO

Clear the event and call SPICRC call-back
YES

SPI CRC error

 bits set ?

NO

YES

SPIRDY bit set ?

DWT_INT_RXFR bit set

and No Data mode?

NO

YES
Clear the event and call RX OK call-back

Clear the event and call SPIRDY call-back

NO

YES

exit

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.6.7 dwt_writesysstatuslo

void dwt_writesysstatuslo(uint32_t mask);

This function writes a value to the system status register (lower). Host can do this to clear events in

the status register and any associated interrupts.

Parameters:

Type Name Description

uint32_t mask Value to send to the system status register

(lower 32-bits),

Return Parameters:

none

5.6.8 dwt_writesysstatushi

void dwt_writesysstatuslo(uint32_t mask);

This function writes a value to the system status register (higher). Host can do this to clear events in

the status register and any associated interrupts.

Parameters:

Type Name Description

uint32_t mask Value to send to the system status register

(higher bits),

Return Parameters:

None

Notes:

 Be aware that the size of this register varies per device

 DW3000 devices only require a 16-bit mask value typecast to 32-bit register

 DW3720 devices require 32-bit mask value.

5.6.9 dwt_readsysstatuslo

uint32_t dwt_readsysstatuslo(void);

This function reads the current value of the system status register (lower 32 bits).

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Parameters:

None

Return Parameters:

Type Description

uint32_t A uint32_t value containing the value of the system status register (lower 32 bits)

5.6.10 dwt_readsysstatushi

uint32_t dwt_readsysstatushi(void);

This function reads the current value of the system status register (higher bits).

Parameters:

None

Return Parameters:

Type Description

uint32_t A uint32_t value containing the value of the system status register (higher bits)

Notes:

 Be aware that the size of this register varies per device

 DW3000 devices only require a 16-bit mask value typecast to 32-bit register

 DW3720 devices require 32-bit mask value.

5.6.11 dwt_writerdbstatus

void dwt_writerdbstatus (uint8_t mask);

This function writes a value to the receiver double buffer status register. Host can do this to clear

events in the status register and any associated interrupts.

Parameters:

Type Name Description

uint8_t mask Value to write to the register.

Return Parameters:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

None

5.6.12 dwt_readrdbstatus

uint8_t dwt_readrdbstatus(void);

This function reads the current value of the receiver double buffer register.

Parameters:

None

Return Parameters:

Type Description

uint8_t A uint8_t value containing the value of the receiver double buffer register

5.7 MAC configuration APIs

5.7.1 dwt_setpanid

void dwt_setpanid(uint16_t panID);

This function sets the PAN ID value. These are typically assigned by the PAN coordinator when a

node joins a network. This value is only used by the IC for frame filtering. See the

dwt_configureframefilter() function.

Parameters:

Type Name Description

uint16_t panID This is the PAN ID.

Return Parameters:

none

Notes:

This function can be called to set device’s PANID for frame filtering use, it does not need to be set if

frame filtering is not being used. Insertion of PAN ID in the TX frames is the responsibility of the

upper layers calling the dwt_writetxdata() function.

5.7.2 dwt_setaddress16

void dwt_setaddress16(uint16_t shortAddress);

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This function sets the 16-bit short address values. These are typically assigned by the PAN

coordinator when a node joins a network. This value is only used by the IC for frame filtering. See

the dwt_configureframefilter() function.

Parameters:

Type Name Description

uint16_t shortAddress This is the 16-bit address to set.

Return Parameters:

none

Notes:

This function is called to set device’s short (16-bit) address, it does not need to be set if frame filtering

is not being used. Insertion of short (16-bit) address, in the TX frames is the responsibility of the upper

layers calling the dwt_writetxdata() function.

5.7.3 dwt_seteui

void dwt_seteui (uint8_t* eui64);

The dwt_seteui() function sets the 64-bit address.

Parameters:

Type Name Description

uint8_t* eui64 This is a pointer to the 64-bit address to set, arranged as 8

unsigned bytes. The low order byte comes first.

Return Parameters:

none

Notes:

This function may be called to set a long (64-bit) address used for address filtering. If address filtering

is not being used, then this register does not need to be set.

It is possible for a 64-bit address to be programmed into the IC’s one-time programmable memory

(OTP memory) during customers’ manufacturing processes and automatically loaded into this register

on power-on reset or wake-up from sleep. dwt_seteui() may be used subsequently to change the

value automatically loaded.

5.7.4 dwt_geteui

void dwt_geteui (uint8_t* eui64);

The dwt_geteui() function gets the programmed 64-bit EUI value.

Parameters:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Type Name Description

uint8_t* eui64 This is a pointer to the 64-bit address to read, arranged as 8

unsigned bytes. The low order byte comes first.

Return Parameters:

none

Notes:

This function may be called to get the EUI value. The value will be 0xFFFFFFFF00000000 if it has not

been programmed into OTP memory or has not been set by a call to dwt_seteui() function.

It is possible for a 64-bit address to be programmed into the IC’s one-time programmable memory

(OTP memory) during customers’ manufacturing processes and automatically loaded into this register

on power-on reset or wake-up from sleep. dwt_seteui() may be used subsequently to change the

value automatically loaded.

5.7.5 dwt_configureframefilter

void dwt_configureframefilter(uint16_t enabletype, uint16_t filtermode) ;

This dwt_configureframefilter() function enables frame filtering according to the mask parameter.

Parameters:

Type Name Description

uint16_t enabletype This enables 802.15.4 frame filter (DWT_FF_ENABLE_802_15_4)

or disables the frame filter (DWT_FF_DISABLE)

uint16_t filtermode This enables a particular frame filter options, see Table 22.

Return Parameters:

none

Notes:

This function is used to enable frame filtering, the device address and pan ID should be configured

beforehand.

Table 22: Bitmask values for frame filtering enabling/disabling

Definition Value Description

DWT_FF_BEACON_EN 0x001 Beacon frames allowed

DWT_FF_DATA_EN 0x002 Data frames allowed

DWT_FF_ACK_EN 0x004 ACK frames allowed

DWT_FF_MAC_EN 0x008 MAC command frames allowed

DWT_FF_RSVD_EN 0x010 Reserved frame types allowed

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

DWT_FF_MULTI_EN 0x020 Multipurpose frame types allowed

DWT_FF_FRAG_EN 0x040 Fragmented frame types allowed

DWT_FF_EXTEND_EN 0x080 Extended frame types allowed

DWT_FF_COORD_EN 0x100 behave as coordinator (can receive frames
with no destination address (PAN ID has
to match))

DWT_FF_IMPBRCAST_EN 0200 MAC implicit Broadcast allowed.

5.7.6 dwt_configure_le_address

void dwt_configure_le_address(uint16_t addr, int leIndex);

This function is used to write a 16 bit address to a desired Low-Energy device (LE) address. For frame

pending to function when the correct bits are set in the frame filtering configuration via the

dwt_configureframefilter(). See dwt_configureframefilter() for more details.

Parameters:

Type Name Description

uint16_t addr The uint16_t address value to be written to the selected LE

register

int leIndex The Low-Energy device (LE) address to write to. There are four

options for this index: 0, 1, 2 & 3. The index the LE_PEND_01

register with offset 0 (LE_ADDR0), LE_PEND_01 register with

offset 16 (LE_ADDR1), LE_PEND_23 register with offset 0

(LE_ADDR2) and LE_PEND_23 with offset 16 (LE_ADDR3)

respectively.

Return Parameters:

none

5.7.7 dwt_enableautoack

void dwt_enableautoack(uint8_t responseDelayTime, int enable);

This function enables automatic ACK to be automatically sent when a frame with ACK request is

received. The ACK frame is sent after a specified responseDelayTime (in preamble symbols, max is

255). It can also be enabled or disabled depending on how the enable parameter is set.

Parameters:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Type Name Description

uint8_t responseDelayTime The delay between the ACK request reception and ACK

transmission.

int enable This argument enables the Auto-ACK feature with ‘1’ and

disables it with ‘0’.

Return Parameters:

none

Notes:

This dwt_enableautoack() function is used to enable the automatic ACK response. It is recommended

that the responseDelayTime is set as low as possible consistent with the ability of unit requesting the

ACK to turn around and be ready to receive the response. If the host system is using the

DWT_RESPONSE_EXPECTED mode (with rxDelayTime in dwt_setrxaftertxdelay() function set to 0) in

the dwt_starttx() function then the responseDelayTime can be set to 3 symbols (3 µs) without loss of

preamble symbols in the receiver awaiting the ACK.

5.7.8 dwt_getframelength

uint16_t dwt_getframelength(uint8_t *rng);

This function will read the length of the last received frame. This function presumes that a good

frame or packet has been received.

Parameters:

Type Name Description

uint8_t* rng This is for software compatibility with other products. Not used

with DW3xxx. The value should be set to NULL pointer.

Return Parameters:

Type Description

uint16_t A uint16_t value with the number of octets in the received frame.

file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_starttx

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.8 Temperate and voltage reading APIs

5.8.1 dwt_readtempvbat

uint16_t dwt_readtempvbat(void);

This function reads the temperature and battery voltage. Note: the DW3XXX needs to be in IDLE_PLL

mode or the call will return 0.

Parameters:

none

Return Parameters:

Type Description

uint16_t The low 8-bits are voltage value, and the high 8-bits are temperature value.

Notes:

This function can be called to read the battery voltage and temperature. It enables the IC’s internal

convertors to sample the current IC temperature and battery. Must be called when DW3xxx is in IDLE.

5.8.2 dwt_convertrawtemperature

float dwt_convertrawtemperature(uint8_t raw_temp);

This function takes a raw temperature value and applies the conversion factor to return a

temperature in degrees.

Parameters:

Type Name Description

uint8_t raw_temp Raw 8-bit temperature value, as returned by dwt_readtempvbat()

Return Parameters:

Type Description

float The temperature value in degrees.

Notes:

This function is called to convert the raw IC temperature to degrees, the conversion is given by:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Temperature (°C) = ((SAR_LTEMP – OTP_READ(Vtemp @ 23°C)) x 1.05) + 22

5.8.3 dwt_convertrawvoltage

float dwt_convertrawvoltage (uint8_t raw_voltatge);

This function takes a raw voltage value and applies the conversion factor to return a voltage in volts.

Parameters:

Type Name Description

uint8_t raw_voltage Raw 8-bit voltage value, as returned by dwt_readtempvbat()

Return Parameters:

Type Description

float The voltage value in volts.

Notes:

This function is called to convert the raw IC voltage to volts, the conversion is given by:

Voltage (V) = ((SAR_LVBAT – OTP_READ(Vmeas @ 3.0 V)) *0.4 * 16/ 255) + 3.0

5.9 OTP and AON access APIs

5.9.1 dwt_otpread

void dwt_otpread(uint32_t address, uint32_t *array, uint8_t length);

This function is used to read a number (given by length) of 32-bit values from the IC’s OTP memory,

starting at given address. The given array will contain the read values.

Parameters:

Type Name Description

uint32_t address This is starting address in the OTP memory from which to read

uint16_t* array
This is the 32-bit array that will hold the read values. It should

be of at least length 32-bit words long.

uint8_t length The number of values to read

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Return Parameters:

none

Notes:

None

5.9.2 dwt_otpwriteandverify

int dwt_otpwriteandverify(uint32_t value, uint16_t address);

This function is used to program 32-bit value into OTP memory.

Parameters:

Type Name Description

uint32_t value this is the 32-bit value to be programmed into OTP memory

uint16_t address
this is the 16-bit OTP memory address into which the 32-bit

value is programmed

Return Parameters:

Type Description

int Return values can be either DWT_SUCCESS = 0 or DWT_ERROR = -1.

Notes:

The IC has a small amount of one-time-programmable (OTP) memory intended for device specific

configuration or calibration data. Some areas of the OTP memory are used to save device calibration

values determined during IC testing, while other OTP memory locations are intended to be set by the

customer during module manufacture and test.

Programming OTP memory is a one-time only activity, any values programmed in error cannot be

corrected. Also, please take care when programming OTP memory to only write to the designated

areas – programming elsewhere may permanently damage the IC’s ability to function normally.

The OTP memory locations are as defined in Table 23. The OTP memory locations are each 32-bits

wide; OTP addresses are word addresses, so each increment of address specifies a different 32-bit

word.

Table 23: OTP memory map

Addre
ss

Size
(Used
Bytes)

Byte [3] Byte [2] Byte [1] Byte [0] Programmed
By

0x00 4 64 bit EUID Customer

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

0x01 4

0x02 4
Alternative 64bit EUID (Selected via reg/SR register) Customer

0x03 4

0x04 4
LDOTUNE_CAL Prod Test

0x05 4

0x06 4 {“0001,0000,0001”, “CHIP ID 5 nibbles (20 bits)”} Prod Test
0x07 4 {“0001” , “LOT ID – 7 nibbles (28bits)”} Prod Test
0x08 4 - Vbat @ 3.0 V

[23:16]
Vbat @ 3.62 V

[15:8]
Vbat @ 1.62 V

[7:0] Prod Test
0x09 2

Temp @ 22 °C
+/- 2 °C [7:0] Prod Test

0x0A 0 BIASTUNE_CAL Prod Test
0x0B 4 Antenna Delay – RFLoop

Prod Test
0x0C 4 AoA Iso CH9

RF2->RF1

AoA Iso CH9
RF1->RF2

AoA Iso CH5
RF2 -> RF1

AoA Iso CH5
RF1->RF2

Prod Test
0x0D 0 W.S. Lot ID [3] W.S. Lot ID [2] W.S. Lot ID [1] W.S. Lot ID [0] Prod Test
0x0E 0 W.S. Lot ID [5] W.S. Lot ID [4]

Prod Test
0x0F 0

W.S. Wafer

Number
W.S. Y Loc W.S. X Loc

Prod Test
0x10 4 Customer

0x11 4 Customer

0x12 4 Customer

0x13 4 Customer

0x14 4 Customer

0x15 4 Customer

0x16 4 Customer

0x17 4 Customer

0x18 4 Customer

0x19 4 Customer

0x1A 4 Customer

0x1B 4 Customer

0x1C 4 Customer

0x1D 4 Customer

0x1E 1 XTAL_Trim[6:0] Customer

0x1F 1 OTP Revision Customer

0x20 4 RX_TUNE_CAL: DGC_CFG0 Prod Test

0x21 4 RX_TUNE_CAL: DGC_CFG1 Prod Test

0x22 4 RX_TUNE_CAL: DGC_CFG2 Prod Test

0x23 4 RX_TUNE_CAL: DGC_CFG3 Prod Test

0x24 4 RX_TUNE_CAL: DGC_CFG4 Prod Test

0x25 4 RX_TUNE_CAL: DGC_CFG5 Prod Test

0x26 4 RX_TUNE_CAL: DGC_CFG6 Prod Test

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

0x27 4 RX_TUNE_CAL: DGC_LUT_0 – CH5 Prod Test

0x28 4 RX_TUNE_CAL: DGC_LUT_1 – CH5 Prod Test

0x29 4 RX_TUNE_CAL: DGC_LUT_2 – CH5 Prod Test

0x2A 4 RX_TUNE_CAL: DGC_LUT_3 – CH5 Prod Test

0x2B 4 RX_TUNE_CAL: DGC_LUT_4 – CH5 Prod Test

0x2C 4 RX_TUNE_CAL: DGC_LUT_5 – CH5 Prod Test

0x2D 4 RX_TUNE_CAL: DGC_LUT_6 – CH5 Prod Test

0x2E 4 RX_TUNE_CAL: DGC_LUT_0 – CH9 Prod Test

0x2F 4 RX_TUNE_CAL: DGC_LUT_1 – CH9 Prod Test

0x30 4 RX_TUNE_CAL: DGC_LUT_2 – CH9 Prod Test

0x31 4 RX_TUNE_CAL: DGC_LUT_3 – CH9 Prod Test

0x32 4 RX_TUNE_CAL: DGC_LUT_4 – CH9 Prod Test

0x33 4 RX_TUNE_CAL: DGC_LUT_5 – CH9 Prod Test

0x34 4 RX_TUNE_CAL: DGC_LUT_6 – CH9 Prod Test

0x35 4 PLL_LOCK_CODE Prod Test

0x36 –
0x5F

UNALLOCATED

Customer

0x60 1 QSR Register (Special function register) Reserved

0x61 Q_RR Register
[7:0] Reserved

0x62 –
0x77

4 UNALLOCATED
Customer

0x78 4 AES_KEY[127:96] (big endian order) Customer

0x79 4 AES_KEY[95:64] (big endian order) Customer

0x7A 4 AES_KEY[63:32] (big endian order) Customer

0x7B 4 AES_KEY[31:0] (big endian order) Customer

0x7C 4 AES_KEY[255:224] (big endian order) Customer

0x7D 4 AES_KEY[223:192] (big endian order) Customer

0x7E 4 AES_KEY[191:160] (big endian order) Customer

0x7F 4 AES_KEY[159:128] (big endian order) Customer

The QSR (“Special function register”) is a 32-bit segment of OTP that is directly readable via
the register interface upon power up. To program the SR register follow the normal OTP
programming method but set the OTP address to 0x60. As this is part of OTP boot sequence
the new value will be present in the QSR register following the next boot up sequence.
For more information on OTP memory programming please consult the User Manual [2] and Data

Sheet [1].

5.9.3 dwt_otpwrite

int dwt_otpwrite(uint32_t value, uint16_t address);

This function is used to program 32-bit value into OTP memory. It will not validate/check the written

value (dwt_otpwriteandverify() checks if the value has been saved correctly).

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Parameters:

Type Name Description

uint32_t value this is the 32-bit value to be programmed into OTP memory

uint16_t address
this is the 16-bit OTP memory address into which the 32-bit

value is programmed

Return Parameters:

Type Description

int Return value is always DWT_SUCCESS = 0

Notes:

5.9.4 dwt_aon_read

uint8_t dwt_aon_read (uint16_t aon_address);

The dwt_aon_read() function reads from the AON memory. It returns an 8-bit read from the given

AON memory address.

Parameters:

Type Name Description

uint16_t aon_address This is the address of the memory location to read.

Return Parameters:

Type Description

uint8_t 8-bit value of the AON memory address given.

Notes:

This function allows the user to read addresses from AON memory. Please see the implementation of

dwt_aon_read() for an example of how this function is utilised.

5.9.5 dwt_aon_write

void dwt_aon_read (uint16_t aon_address , uint8_t aon_write_data);

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

The dwt_aon_write() function writes to the AON memory given a 16-bit address and 8-bit value. It

has no return values.

Parameters:

Type Name Description

uint16_t aon_address This is the address of the memory location to write to.

uint8_t aon_write_data This is the 8-bit value that is written to the specified AON

address.

Return Parameters:

none

Notes:

This function allows the user to write a value to AON memory. Please see the implementation of

dwt_aon_write() for an example of how this function is utilised.

5.9.6 dwt_clearaonconfig

void dwt_clearaonconfig(void);

This function allows the user to clear the AON configuration. This will clear any previously

programmed configurations such as AON on-wake / wake-up configurations. Default values will be

restored.

Parameters:

none

Return Parameters:

none

Notes:

When this function is called, anything set in the AON_DIG_CFG register will be cleared. The same

applies for the ANA_CFG register. The default configuration will be loaded into the AON_CTRL register

also.

5.10 TX test APIs

5.10.1 dwt_setfinegraintxseq

void dwt_setfinegraintxseq(int enable);

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This is used to activate/deactivate fine grain TX sequencing. In some applications/use cases the fine

grain TX sequencing needs to be disabled, e.g. continuous wave mode or when driving an external

PA. Please refer to [2] for more details about those modes.

Parameters:

Type Name Description

int enable Set to 1 to enable fine grain TX sequencing, 0 to disable it.

Return Parameters:

none

5.10.2 dwt_setxtaltrim

void dwt_setxtaltrim(uint8_t value);

This function writes the crystal trim value parameter into the IC crystal trimming register.

Parameters:

Type Name Description

uint8_t value
Crystal trim value (in range 0x0 to 0x3F, 63 steps (~1.5ppm per

step).

Return Parameters:

none

Notes:

This function can be called any time to set the crystal trim register value. This is used to fine tune and

adjust the XTAL frequency. Better long-range performance may be achieved when crystals are more

closely matched. Crystal trimming may allow this without using expensive TCXO devices. Please

consult the User Manual [2], Data Sheet [1] and application notes available on www.decawave.com.

5.10.3 dwt_configcwmode

void dwt_configcwmode(void);

This function configures the device to transmit a Continuous Wave (CW) at a specified channel

frequency. This may be of use as part of crystal trimming procedure. Please consult with Decawave’s

applications support team for details of crystal trimming procedures and considerations.

Parameters:

none

Return Parameters:

none

http://www.decawave.com/

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Notes:

Example code of how to use this function in conjunction with dwt_setxtaltrim() function is given by

the Example 04a: continuous wave mode sample example in the API package [5]

5.10.4 dwt_configcontinuousframemode

void dwt_configcontinuousframemode(uint32_t framerepetitionrate);

This function configures continuous frame mode. This facilitates measurement of the power in the

transmitted spectrum.

Parameters:

Type Name Description

uint32_t framerepetitionrate

This is a 32-bit value that is used to set the interval

between transmissions. The minimum value is 4. The units

are approximately 8 ns. (or more precisely

512/(499.2e6*128) seconds)).

Return Parameters:

none

Notes:

This function is used to configure continuous frame (transmit power spectrum test) mode, used in TX

power spectrum measurements. This test mode is provided to help support regulatory approvals

spectral testing. Please consult with Decawave’s applications support team for details of regulatory

approvals considerations. The dwt_configcontinuousframemode() function enables a repeating

transmission of the data from the transmit buffer. To use this test mode, the operating channel,

preamble code, data length, offset, etc. should all be set-up as if for a normal transmission.

The framerepetitionrate parameter value is programmed in units of one quarter of the 499.2 MHz

fundamental frequency, (~ 8 ns). To send one frame per millisecond, a value of 124800 or

0x0001E780 should be set. A value <2 will not work properly, and a time value less than the frame

length will cause the frames to be sent back-to-back without any pause.

We expect there to be two use cases for the dwt_configcontinuousframemode() function:

(a) Testing to figure out the TX power/pulse width to meet the regulations.

(b) In the approvals house to enable the spectral test.

To end the test and return to normal operation the device can be rest with dwt_softreset() function.

Please see Example 04b: continuous frame mode, of the API package [5] for an example of the use of

this API function.

5.10.5 dwt_readpgdelay

uint8_t dwt_readpgdelay(void);

file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_xtaltrim

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This is used to read the pulse generator delay value of the TX signal.

Parameters:

none

Return Parameters:

Type Description

uint8_t Pulse generator delay read from TX_CTRL_HI register.

Notes:

5.10.6 dwt_repeated_cw

void dwt_repeated_cw(int cw_enable, int cw_mode_config);

This function will enable a repeated continuous waveform on the selected device given a pulse

generator channel and pulse generator coefficient.

Parameters:

Type Name Description

int cw_enable CW mode enable

int cw_mode_config CW configuration mode

Return Parameters:

none

Notes:

5.10.7 dwt_repeated_frames

void dwt_repeated_frames(uint32_t framerepetitionrate);

This function enables repeated frames to be generated given a frame repetition rate.

Parameters:

Type Name Description

uint32_t framerepetitionrate Value specifying the rate at which frames with be repeated.

If the value is less than the frame duration, the frames are

sent back-to-back.

Return Parameters:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

none

Notes:

5.10.8 dwt_stop_repeated_frames

uint16_t dwt_stop_repeated_frames(void);

This function disables repeated frames from being generated.

Parameters:

none

Return Parameters:

none

5.10.9 dwt_disablecontinuousframemode

void dwt_disablecontinuousframemode(void)

This function stops the continuous TX frame mode.

Parameters:

none

Return Parameters:

none

5.10.10 dwt_disablecontinuouswavemode

void dwt_disablecontinuouswavemode(void)

This function stops the continuous TX wave mode.

Parameters:

none

Return Parameters:

none

5.10.11 dwt_calcbandwidthadj

uint8_t dwt_calcbandwidthadj(uint16_t target_count);

This function runs a bandwidth compensation algorithm that adjusts the bandwidth of the output

spectrum to correct for the effects of different temperatures. This ensures that the bandwidth is

constant at any temperature. The target count parameter is a reference value taken at a known

temperature for a known good bandwidth using the dwt_calcpgcount() API call, which relates

directly to the bandwidth of the spectrum.

file:///C:/Users/ac080209/Desktop/DW3720_Software_API_Guide_.docx%23_dwt_calculatepgcount

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Parameters:

Type Name Description

uint16_t target_count
This is a 16-bit value that is used by the IC to calculate a

bandwidth adjust value

Return Parameters:

Type Description

uint8_t This is an 8-bit value that represents a pulse generator delay (PG_DELAY) value

Notes:

See the app note in [4] for more details. The return value is automatically set into DW3xxx PG delay

register, but it is also returned here so host knows what it was set to.

5.10.12 dwt_calcpgcount

uint16_t dwt_calcpgcount(uint8_t pgdly);

This function returns a pulse generator count value that is used as a reference for bandwidth

compensation over temperature. The pulse generator delay value that is passed in should be the

current bandwidth setting.

Parameters:

Type Name Description

uint8_t pgdly
This is an 8-bit value representing the current pulse generator

delay for the current bandwidth setting

Return Parameters:

Type Description

uint16_t
This is a 16-bit value that represents the pulse generator count value for the current

pulse generator delay. It is directly related to the bandwidth.

Notes:

See the app note in [4] for more details. The return value should be stored as a reference to be used

with dwt_setpllrxprebufen.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.11 AES APIs

5.11.1 dwt_configure_aes

void dwt_configure_aes(const dwt_aes_config_t *pCfg)

This function initializes the AES_CFG register that is responsible for the tag size, key size, etc.

Parameters:

Type Name Description

dwt_aes_config_t pCfg
This struct contains all the needed fields for initialization

of this reg.

 typedef struct {

dwt_aes_otp_sel_key_block_e aes_otp_sel_key_block; //!< Select OTP

 //key, first 128 or 2nd 128

 //bits

dwt_aes_key_otp_type_e aes_key_otp_type;

dwt_aes_core_type_e aes_core_type; //!< Core type

dwt_mic_size_e mic; //!< Message integrity code

 //size

dwt_aes_key_src_e key_src; //!< Location of the key:

 //either as programmed in

 //registers(128 bit) or in the

 //RAM

dwt_aes_key_load_e key_load; //!< Loads key from RAM

uint8_t key_addr; //!< Address offset of AES key

 //in AES key RAM

dwt_aes_key_size_e key_size; //!< AES key length

 //configuration corresponding

 //to AES_KEY_128/192/256bit

dwt_aes_mode_e mode; //!< Operation type

 //encrypt/decrypt

} dwt_aes_config_t ;

Return Parameters:

none

Notes:

Further information on the structures that make up the dwt_aes_config_t structure can be found

within the source code.

5.11.2 dwt_set_keyreg_128

void dwt_set_keyreg_128(const dwt_aes_key_t *key);

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This function sets the AES key – 128 bits. It updates the AES_KEY0 – AES_KEY3.

Parameters:

Type Name Description

dwt_aes_key_t key
This struct contains all the keys values that is needed for the

initialization.

Return Parameters:

none

5.11.3 dwt_do_aes

int8_t dwt_do_aes(dwt_aes_job_t *job, dwt_aes_core_type_e core_type)

This function responsible for data encryption/decryption, filling the relevant buffer (in case of

decryption) or updating the TX buffer with encrypted data (in case of encryption). The function also

checks for errors and updates the nonce.

Parameters:

Type Name Description

dwt_aes_job_t job

This is a struct pointer that contains the info and

buffers for encryption/decryption, header, payload,

nonce, …

dwt_aes_core_type_e core_type

This option refers to the AES core type used by the IC.

The options are either GCM core type (0) or CCM core

type (1).

Return Parameters:

Type Description

int8_t
Negative value on error or AES_STS reg value. AES_STS reg value will be checked in

the calling function

5.11.4 dwt_mic_size_from_bytes

dwt_mic_size_e dwt_mic_size_from_bytes(uint8_t mic_size_in_bytes)

This function gets mic size in bytes and returns the MIC size to fit into AES_CFG-AES_TAG_SIZE reg.

Parameters:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Type Name Description

uint8_t mic_size_in_bytes Mic size in bytes.

Return Parameters:

dwt_mic_size_e – Enum that contains the right value for the AES reg.

5.12 UWB Timer APIs

5.12.1 dwt_timers_reset

void dwt_timers_reset(void);

This function will reset the timers block. It will reset both timers. It can be used to stop a timer

running in repeat mode. Only available in DW3720 device.

Parameters:

none

Return Parameters:

none

Notes:

5.12.2 dwt_timers_read_and_clear_events

void dwt_timers_read_and_clear_events(void);

This function will read the timers' event counts. When reading from this register the values will be

reset/cleared, thus the host needs to read both timers' event counts the events relating to TIMER0

are in bits [7:0] and events relating to TIMER1 in bits [15:8]. Only available in DW3720 device.

Parameters:

none

Return Parameters:

none

Notes:

5.12.3 dwt_configure_timer

void dwt_configure_timer(dwt_timer_cfg_t *tim_cfg);

This function configures selected timer (TIMER0 or TIMER1) as per configuration structure passed in.

Only available in DW3720 device.

Parameters:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Type Name Description

dwt_timer_cfg_t* tim_cfg The timer configuration structure.

 typedef enum

 {

DWT_TIMER0 = 0,

DWT_TIMER1

 } dwt_timers_e;

 typedef enum

 {

DWT_TIM_SINGLE = 0,

DWT_TIM_REPEAT

 } dwt_timer_mode_e;

typedef enum

{

DWT_XTAL = 0, // 38.4 MHz

DWT_XTAL_DIV2 = 1, // 19.2 MHz

DWT_XTAL_DIV4 = 2, // 9.6 MHz

DWT_XTAL_DIV8 = 3, // 4.8 MHz

DWT_XTAL_DIV16 = 4, // 2.4 MHz

DWT_XTAL_DIV32 = 5, // 1.2 MHz

DWT_XTAL_DIV64 = 6, // 0.6 MHz

DWT_XTAL_DIV128 = 7 // 0.3 MHz

 } dwt_timer_period_e;

 typedef struct

 {

dwt_timers_e timer; // Select the timer to use.

dwt_timer_period_e timer_div; // Select the timer frequency (divider).

dwt_timer_mode_e timer_mode; // Select the timer mode.

uint8_t timer_gpio_stop; // Set to '1' to halt GPIO on interrupt.

uint8_t timer_coexout; // Configure GPIO for WiFi co-ex.

 } dwt_timer_cfg_t;

Return Parameters:

none

Notes:

The tim_cfg parameter points to a dwt_timer_cfg _t structure that has various fields to select and

configure different parameters within the IC. The fields of the dwt_timer_cfg _t structure are

identified are individually described below:

Fields Description of fields within the dwt_timer_cfg_t structure

timer

The timer parameter selects the timer to configure. DW3720 has two timers

namely TIMER0 and TIMER1. The timer is selected with setting this to either

DWT_TIMER0 or DWT_TIMER1.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Fields Description of fields within the dwt_timer_cfg_t structure

timer_div

The timer_div is a timer frequency divider, I is used to configure desired timer

frequency. The timer supports a number of frequencies as shown in

dwt_timer_period_e above.

timer_mode
The timer_mode is used to select either a single expiry timer or configure the

timer for continuous/repeat operation.

timer_gpio_stop
If this is set to 1 then the timer will stop when GPIO interrupt is raised. See

more details about GPIO interrupt configuration in User Manual [2]

timer_coexout
This is used to configure the timer for WiFi coexistence mode. On timer expiry

WiFi coex GPIO (4 or 5) is toggled. See also dwt_configure_wificoex_gpio()

5.12.4 dwt_configure_wificoex_gpio

void dwt_configure_wificoex_gpio(uint8_t timer_coexout, uint8_t coex_swap);

This function configures the GPIOs (4 and 5) for COEX_OUT. Only available in DW3720 device.

Parameters:

Type Name Description

uint8_t timer_coexout

This configures whether the timer will control the GPIO

COEX_OUT function. A timer needs to be configured for

this operation see dwt_configure_timer(). Set to 1 to

enable this function, 0 to disable.

uint8_t coex_swap
The configures if the COEX_OUT is on GPIO4 or GPIO5,

when set to 1 the GPIO4 will be COEX_OUT.

Return Parameters:

none

Notes:

5.12.5 dwt_set_timer_expiration

void dwt_set_timer_expiration(dwt_timers_e timer_name, uint32_t exp);

This function sets timer expiration period, it is a 22-bit number. Only available in DW3720 device.

Parameters:

Type Name Description

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

dwt_timers_e timer_name

This selects the timer to configure. DW3720 has two timers

namely TIMER0 and TIMER1. The timer is selected with

setting this to either DWT_TIMER0 or DWT_TIMER1.

uint32_t exp
The configures the expiry count - e.g. if units are XTAL/64

(1.66 us) then setting 1024 ~= 1.7 ms period.

Return Parameters:

none

Notes:

5.12.6 dwt_timer_enable

void dwt_timer_enable(dwt_timers_e timer_name);

This function enables the timer. In order to enable, the timer enable bit [0] for TIMER0 or [1] for

TIMER1 needs to transition from 0->1. Only available in DW3720 device.

Parameters:

Type Name Description

dwt_timers_e timer_name

This selects the timer to enable. DW3720 has two timers

namely TIMER0 and TIMER1. The timer is selected with

setting this to either DWT_TIMER0 or DWT_TIMER1.

Return Parameters:

none

Notes:

5.13 SPI driver functions

These functions are platform specific SPI read and write functions, external to the driver code, used

by the device driver to send and receive data over the SPI interface to and from the IC. The device

driver abstracts the target SPI device by calling it through generic functions writetospi() and

readfromspi(). In porting the device driver, to different target hardware, the body of these SPI

functions should be written, re-written, or provided in the target specific code to drive the target

microcontroller device’s physical SPI hardware. The initialisation of the target host controller’s

physical SPI interface mode and its data rate is considered to be part of the target system and is

done in the host code outside of the device driver functions.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.13.1 writetospi

int writetospi (uint16_t hLen, const uint8_t *hbuff, uint32_t bLen, const uint8_t *buffer);

This function is called by the device driver code (from the dwt_xfer3xxx() function) when it wants to

write to the IC’s SPI interface (registers) over the SPI bus.

Parameters:

Type Name Description

uint16_t hLen This is gives the length of the header buffer (hbuff)

uint8_t* hbuff
This is a pointer to the header buffer byte array. The LSB is the first

element.

uint32_t bLen This is gives the length of the data buffer (buffer), to write.

uint8_t* buffer
This is a pointer to the data buffer byte array. The LSB is the first

element. This holds the data to write.

Return Parameters:

Type Description

int Return values can be either DWT_SUCCESS = 0 or DWT_ERROR = -1.

Notes:

The return values can be used to notify the upper application layer that there was a problem with SPI

write. The writetospi() function has a return value, however it should be noted that the device driver

itself does not take any notice of success/error return value but instead assumes that SPI accesses

succeed without error.

5.13.2 writetospiwithcrc

int writetospiwithcrc(uint16_t hLen, const uint8_t *hbuff, uint32_t bLen, const uint8_t *buffer,
uint8_t crc);

When the IC is configured to use SPI with 8-bit CRC mode, this function is called by the device driver

code (from the dwt_xfer3xxx() function) to write to the SPI interface (registers) over the SPI bus. In

this mode the IC is expecting an 8-bit CRC to be sent as the last byte of the write SPI transaction. If

the CRC it receives from the host does not match a CRC it generates internally, then the IC will set

SPI CRC error bit which will generate an interrupt if this status event has been masked enabled by

the dwt_enablespicrccheck() function.

Parameters:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Type Name Description

uint16_t hLen This is gives the length of the header buffer (hbuff)

uint8_t* hbuff
This is a pointer to the header buffer byte array. The LSB is the first

element.

uint32_t bLen This is gives the length of the data buffer (buffer), to write.

uint8_t* buffer
This is a pointer to the data buffer byte array. The LSB is the first

element. This holds the data to write.

uint8_t crc
This is the 8-bit CRC generated from the header and data bytes,

which needs to be at the end of the SPI transaction

Return Parameters:

Type Description

int Return values can be either DWT_SUCCESS = 0 or DWT_ERROR = -1.

Notes:

The return values can be used to notify the upper application layer that there was a problem with SPI

write. The writetospiwithcrc() function has a return value, however it should be noted that the device

driver itself does not take any notice of success/error return value but instead assumes that all SPI

accesses succeed without error.

5.13.3 readfromspi

int readfromspi (uint16_t hLen, const uint8_t *hbuff, uint32_t bLen, uint8_t *buffer);

This function is called by the device driver code (from the dwt_xfer3xxx() function) when it wants to

read from the IC’s SPI interface (registers) over the SPI bus.

Parameters:

Type Name Description

uint16_t hLen This is gives the length of the header buffer (hbuff)

uint8_t* hbuff This is a pointer to the header buffer byte array. The LSB is the first

element.

uint32_t bLen This is gives the number of bytes to read.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

uint8_t* buffer This is a pointer to the data buffer byte array. The LSB is the first

element. This holds the data being read.

Return Parameters:

Type Description

int Return values can be either DWT_SUCCESS = 0 or DWT_ERROR = -1.

Notes:

The return values can be used to notify the upper application layer that there was a problem with SPI

read. The readfromspi() function has a return parameter, however it should be noted that the device

driver itself does not take any notice of success/error return value but instead assumes that each SPI

access succeeds without error.

5.14 Mutual-exclusion API functions

The purpose of these functions is to provide for microprocessor interrupt enable/disable, which is

used for ensuring mutual exclusion from critical sections in the device driver code where interrupts

and background processing may interact. The only use made of this is to ensure SPI accesses are

non-interruptible.

The mutual exclusion API functions are decamutexon() and decamutexoff(). These are external to the

driver code but used by the device driver when it wants to ensure mutual exclusion from critical

sections. This usage is kept to a minimum and the disable period is also kept to a minimum (but is

dependent on the SPI data rate). A blanket interrupt disable may be the easiest way to provide this

mutual exclusion functionality in the target system, but at a minimum those interrupts coming from

the device should be disabled/re-enabled by this activity.

In implementing the decamutexon() and decamutexoff() functions in a particular microprocessor

system, the implementer may choose to use #defines to map these calls transparently to the target

system. Alternatively the appropriate code may be embedded in the functions provided in the

deca_mutex.c source file.

5.14.1 decamutexon

decaIrqStatus_t decamutexon (void);

This function is used to turn on mutual exclusion (e.g. by disabling interrupts). This is called at the

start of the critical section of SPI access. The decamutexon() function should operate to read the

current system interrupt status in the target microcontroller system’s interrupt handling logic with

respect to the handling of the IC’s interrupt. Let’s call this “IRQ_State” Then it should disable the

interrupt relating to the IC, and then return the original IRQ_State.

Parameters:

 none

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Return Parameters:

Type Description

decaIrqStatus_t

This is the state of the target microcontroller’s interrupt logic with respect to

the handling the IC’s interrupt, as it was on entry to the decamutexon()

function before it did any interrupt disabling.

Typedef int decaIrqStatus_t ;

Notes:

The decamutexon() function returns the IC’s interrupt status, which can be noted and appropriate

action taken. The returned status is intended to be used in the call to decamutexoff() function to be

used to restore the interrupt enable status to its original pre-decamutexon() state.

5.14.2 decamutexoff

void decamutexoff (decaIrqStatus_t state);

This function is used to restore the IC’s interrupt state as returned by decamutexon() function. It is

used to turn off mutual exclusion (e.g. by enabling interrupts if appropriate). This is called at the end

of the critical section of SPI access. The decamutexoff() function should operate to restore the

system interrupt status in the target microcontroller system’s interrupt handling logic to the state

indicated by the input “IRQ_State” parameter, state.

Parameters:

Type Name Description

decaIrqStatus_t state This is the state of the target microcontroller’s interrupt logic with

respect to the handling of the IC’s interrupt, as it was on entry to

the decamutexon () function before it did any interrupt disabling.

Return Parameters:

 none

Notes:

The state parameter passed into decamutexoff() function should be used to appropriately

set/restore the system interrupt status in the target microcontroller system’s interrupt handling logic.

5.15 Sleep function

The purpose of this function is to provide a platform dependent implementation of sleep feature, i.e.

waiting for a certain amount of time before proceeding with the application’s next step.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This is an external function used by the driver code to wait for the end of a process, e.g. the

stabilization of a clock or the completion of a write command. This function is provided in the

deca_sleep.c source file.

5.15.1 deca_sleep

void deca_sleep (unsigned int time_ms);

This function is used to wait for a given amount of time before proceeding to the next step of the

calling function.

Parameters:

Type Name Description

unsigned int time_ms The amount of time to wait, expressed in milliseconds.

Return Parameters:

 None

Notes:

The implementation provided here is designed for a simple single-threaded system and is blocking,

i.e. it will prevent the system from doing anything else during the waiting time.

5.15.2 deca_usleep

void deca_usleep (unsigned int time_us);

This function is used to wait for a given amount of time before proceeding to the next step of the

calling function.

Parameters:

Type Name Description

unsigned int time_us The amount of time to wait, expressed in microseconds.

Return Parameters:

 None

Notes:

The implementation provided here is designed for a simple single-threaded system and is blocking,

i.e. it will prevent the system from doing anything else during the waiting time.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.16 Dual SPI semaphore control functions

These functions are used to provide low-level access to semaphore operations that are used when

controlling the two SPI interfaces of the DW3720.

5.16.1 dwt_ds_sema_request

void dwt_ds_sema_request(void);

Request access to the device registers, using the dual SPI semaphore request command. If the

semaphore is available, the semaphore will be given this will be shown by calling

dwt_ds_sema_status() which will return the status. This does not exist in DW3000.

Parameters:

none

Return Parameters:

none

Notes:

5.16.2 dwt_ds_sema_release

void dwt_ds_sema_release(void);

Release the semaphore that was taken by this host. This does not exist in DW3000.

Parameters:

none

Return Parameters:

none

Notes:

5.16.3 dwt_ds_sema_force

void dwt_ds_sema_force(void);

This can be used by host on the SPI2 to force taking of the semaphore. Take semaphore even if it is

not available. This does not apply to host on SPI1, only host on SPI2 can force taking of the

semaphore. This does not exist in DW3000.

Parameters:

none

Return Parameters:

none

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Notes:

5.16.4 dwt_ds_sema_status

uint8_t dwt_ds_sema_status(void);

Reports the semaphore status bits [7:0]. This does not exist in DW3000.

Parameters:

none

Return Parameters:

Type Description

uint8_t Return value is a uint8_t representing the semaphore status.

Notes:

5.16.5 dwt_ds_sema_status_hi

uint8_t dwt_ds_sema_status_hi(void);

Reports the semaphore status bits [15:8]. This does not exist in DW3000.

Parameters:

none

Return Parameters:

Type Description

uint8_t Return value is a uint8_t representing the semaphore status.

Notes:

5.17 Subsidiary functions

These functions are used to provide low-level access to individually numbered registers and buffers

(or register files). These may be needed to access IC functionality not included in the main API

functions above.

5.17.1 dwt_writetodevice

dwt_writetodevice(uint32_t regFileID, uint16_t index, uint16_t length, const uint8_t *buffer);

This function is used to write to the IC’s registers and buffers. The regID specifies the main address

of the register or parameter block being accessed, e.g. a regID of DX_TIME selects the delay TX or RX

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

start time register. The index parameter selects a sub-address within the register file. An index

value of 0 is used for most of the accesses employed in the device driver. The length parameter

specifies the number of bytes to write, and the buffer parameter points at the bytes to actually

write. If DWT_API_ERROR_CHECK code switch is defined, this function will check input parameters

and assert if an error is detected.

Parameters:

Type Name Description

uint32_t regFileID ID of register file or buffer being accessed.

uint16_t index Byte index into register file or buffer being accessed.

uint16_t length Number of bytes being read/written

uint8_t* buffer Pointer to buffer containing the ‘length’ bytes to be written.

Return Parameters:

 None

5.17.2 dwt_readfromdevice

void dwt_readfromdevice(uint32_t regFileID, uint16_t index, uint16_t length, uint8_t *buffer);

This function is used to read from the IC’s registers and buffers. The parameters are the same as for

the dwt_writetodevice() function above except that the buffer parameter points at a location where

the bytes being read are placed by the function call. If DWT_API_ERROR_CHECK code switch is

defined, this function will check input parameters and assert if an error is detected. It is up to the

developer to ensure that the assert macro is correctly enabled in order to trap any error conditions

that arise.

Parameters:

Type Name Description

uint32_t regFileID ID of register file or buffer being accessed.

uint16_t index Byte index into register file or buffer being accessed.

uint16_t length Number of bytes being read/written

uint8_t* buffer Pointer to buffer in which to return the read data.

Return Parameters:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

 None

5.17.3 dwt_xfer3xxx

void dwt_xfer3xxx(uint32_t regFileID, uint16_t index, uint16_t length, uint8_t *buffer,
spi_modes_e spi_modes);

This function is used to read from or write to the IC’s registers and buffers. The parameters specify

the register address to access, the byte index at which to access said register address, the number of

bytes being read/written, the buffer to read to / write from and the particular SPI mode used

respectively. The SPI modes are specified in Table 24. If DWT_API_ERROR_CHECK code switch is

defined, this function will check input parameters and assert if an error is detected. It is up to the

developer to ensure that the assert macro is correctly enabled in order to trap any error conditions

that arise.

Parameters:

Type Name Description

uint32_t regFileID ID of register file or buffer being accessed.

uint16_t index Byte index into register file or buffer being accessed.

uint16_t length Number of bytes being read/written

uint8_t* Buffer Pointer to buffer in which to return the read data.

spi_modes_e spi_modes Mode of SPI transaction (read or write). See Table 24 for more

details.

Return Parameters:

 None

Notes:

The implementation provided here is designed for a simple single-threaded system and is blocking,

i.e. it will prevent the system from doing anything else during the waiting time.

Both dwt_writetodevice() and dwt_readfromdevice() will use this function with their specified SPI

modes to perform their respective SPI writes and reads.

Table 24: spi_modes_e enum values (SPI read/write modes)

SPI Modes Value Description

DW3000_SPI_RD_BIT 0x0000 Standard SPI read mode.

DW3000_SPI_RD_FAST_CMD 0x0001 SPI read with fast command mode.

DW3000_SPI_WR_FAST_CMD 0x0002 SPI write with fast command mode.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

SPI Modes Value Description

DW3000_SPI_WR_BIT 0x8000 Standard SPI Write mode.

DW3000_SPI_AND_OR_8 0x8001 8-bit SPI read modify write mode

DW3000_SPI_AND_OR_16 0x8002 16-bit SPI read modify write mode

DW3000_SPI_AND_OR_32 0x8003 32-bit SPI read modify write mode

5.17.4 dwt_read32bitreg

uint32_t dwt_read32bitreg(int regFileID);

This function is used to read 32-bit IC registers.

5.17.5 dwt_read32bitoffsetreg

uint32_t dwt_read32bitoffsetreg(int regFileID, int regOffset);

This function is used to read a 32-bit IC register that is part of a sub-addressed block.

5.17.6 dwt_write32bitreg

void dwt_write32bitreg(int regFileID, uint32_t regval);

This function is used to write a 32-bit IC register that is part of a sub-addressed block.

5.17.7 dwt_write32bitoffsetreg

void dwt_write32bitoffsetreg(int regFileID, int regOffset, uint32_t regval);

This function is used to write to a 32-bit IC register that is part of a sub-addressed block.

5.17.8 dwt_read16bitoffsetreg

uint16_t dwt_read16bitoffsetreg(int regFileID, int regOffset);

This function is used to read a 16-bit IC register that is part of a sub-addressed block.

5.17.9 dwt_write16bitoffsetreg

void dwt_write16bitoffsetreg(int regFileID, int regOffset, uint16_t regval);

This function is used to write a 16-bit IC register that is part of a sub-addressed block.

5.17.10 dwt_read8bitoffsetreg

uint8_t dwt_read8bitoffsetreg(int regFileID, int regOffset);

This function is used to read an 8-bit IC register that is part of a sub-addressed block.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

5.17.11 dwt_write8bitoffsetreg

void dwt_write8bitoffsetreg(int regFileID, int regOffset, uint8_t regval);

This function is used to write an 8-bit IC register that is part of a sub-addressed block.

5.17.12 dwt_modify32bitoffsetreg

void dwt_write32bitoffsetreg(int regFileID, int regOffset, uint32_t andmask, uint32_t ormask);

This function is used to clear or set individual bits in a 32-bit register. The andmask will be AND-ed

with the register value, and the ormask OR-ed. Single or multiple bits can be set in a single SPI

transaction.

5.17.13 dwt_modify16bitoffsetreg

void dwt_write16bitoffsetreg(int regFileID, int regOffset, uint16_t andmask, uint16_t ormask);

This function is used to clear or set individual bits in a 16-bit register. The andmask will be AND-ed

with the register value, and the ormask OR-ed. Single or multiple bits can be set in a single SPI

transaction.

5.17.14 dwt_modify8bitoffsetreg

void dwt_modify8bitoffsetreg(int regFileID, int regOffset, uint8_t andmask, uint8_t ormask);

This function is used to clear or set individual bits in an 8-bit register. The andmask will be AND-ed

with the register value, and the ormask OR-ed. Single or multiple bits can be set in a single SPI

transaction.

5.17.15 dwt_writefastCMD

void dwt_writefastCMD(int cmd);

This function is used to write a single byte special 5-bit command word to the device. The supported

commands are listed below:

Table 25: List of supported commands

Command ID Value Description

CMD_TXRXOFF 0x0 Puts the device into IDLE state and clears any events.

CMD_TX 0x1 Immediate start TX

CMD_RX 0x2 Immediate RX on

CMD_DTX 0x3 Delayed TX w.r.t. DX_TIME

CMD_DRX 0x4 Delayed RX w.r.t. DX_TIME

CMD_DTX_TS 0x5 Delayed TX w.r.t. TX timestamp + DX_TIME

CMD_DRX_TS 0x6 Delayed RX w.r.t. TX timestamp + DX_TIME

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Command ID Value Description

CMD_DTX_RS 0x7 Delayed TX w.r.t. RX timestamp + DX_TIME

CMD_DRX_RS 0x8 Delayed RX w.r.t. RX timestamp + DX_TIME

CMD_DTX_REF 0x9 Delayed TX w.r.t. REF_TIME + DX_TIME

CMD_DRX_REF 0xA Delayed RX w.r.t. REF_TIME + DX_TIME

CMD_CCA_TX 0xB TX frame if no preamble detected

CMD_TX_W4R 0xC Immediate start TX, then enable receiver

CMD_DTX_W4R 0xD Delayed TX w.r.t. DX_TIME, then enable receiver

CMD_DTX_TS_W4R 0xE Delayed TX w.r.t. TX timestamp + DX_TIME, then
enable receiver

CMD_DTX_RS_W4R 0xF Delayed TX w.r.t. RX timestamp + DX_TIME, then
enable receiver

CMD_DTX_REF_W4R 0x10 Delayed TX w.r.t. REF_TIME + DX_TIME, then enable
receiver

CMD_CCA_TX_W4R 0x11 TX frame if no preamble detected, then enable
receiver

CMD_CLR_IRQS 0x12 Clear all interrupt events

CMD_DB_TOGGLE 0x13 Toggle double buffer pointer

CMD_SEMA_REQ 0x14 Write to the Semaphore and try to reserve access (if
it hasn't already been reserved by the other master)

CMD_SEMA_REL 0x15 Release the semaphore if it is currently reserved by
this master

CMD_SEMA_FORCE 0x16 Only SPI 2 can issue this command. Force access
regardless of current semaphore value

CMD_SEMA_RESET 0x18 Global digital reset including of the semaphore

CMD_SEMA_RESET_NO_SEM 0x19 Global digital reset without reset of the semaphore

CMD_ENTER_SLEEP 0x1A Enters sleep/deep sleep according to ANA_CFG -
DEEPSLEEP_EN

5.17.16 dwt_readfastCMD

void dwt_readfastCMD(uint32_t cmd, uint8_t *data);

This function is used to read a single byte special 5-bit command word from the device and return

one byte (4-bit) from that address.

5.17.17 dwt_read_reg

uint32_t dwt_read_reg(uint32_t address);

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

This function allows read from the DW3xxx device 32-bit register.

Parameters:

Type Name Description

uint32_t address ID of the DW3xxx register

Return Parameters:

Type Description

uint32_t Value of the 32-bit register

5.17.18 dwt_write_reg

void dwt_read_reg(uint32_t address, uint32_t data);

This function allows read from the DW3xxx device 32-bit register.

Parameters:

Type Name Description

uint32_t address ID of the DW3xxx register

uint32_t data Value to write to register

Return Parameters:

None

6 APPENDIX 1 – SIMPLE EXAMPLES

The API package [5] provides, along with the IC driver itself, a set of simple example applications

designed to show how to achieve a number of basic features of the IC like sending a frame, receiving

a frame, putting the IC to sleep, etc.

All these examples have been designed to be as simple as possible. The main idea is to make the

code self-explanatory and include the least possible amount of code not directly involved in the

achievement of the example-related feature. One of the consequences of this design is that the

examples output very little (or even no) debug information and are designed so that the application

flow can be followed using a debugger to examine run-time operations.

On the hardware side, the examples have been designed to run on an DW3XXX Arduino-type shield.

The base layers included in this package (see detail below) provide specific implementations for this

HW.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

6.1 Package structure

The folder structure of the package is the following:

Figure 8: API package structure tree

Table 26: API package structure Brief description

API

 Root directory of DW3XXX API and test
examples.

├──
Build_Platforms

 Directory containing hardware
platforms that are supported by the
software package.

 |
├──

nRF52840-
DK

 Directory containing SEGGER IDE build
files for Nordic platform.

 |
├──

STM_Nucleo
_F429

 Directory containing STM Workbench
build files for STM platform.

├──
Shared

 Directory that contains shared drivers
for Decawave/Qorvo products.

├──
├──

dwt_uwb_dri
ver

 Driver code for the Decawave/Qorvo
UWB family of products.

├──
Src

 Main source directory of
Decawave/Qorvo API code + simple
examples.

├── examples

 Examples directory containing various
simple examples.

API

Build_platfor
ms

nRF52840-DK
STM_Nucleo_

F429

Shared

dwt_uwb_driv
er

dw3000 dw3720

Src

examples

ex_00a_readi
ng_dev_id

... ex_17_bw_cal

MAC_802_15
_4

MAC_802_15
_8

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

 | ├──

ex_00a_reading_dev
_id

Read Device ID example code.

 | ├── ex_01a_simple_tx Simple TX example code.

 | ├── ex_01b_tx_sleep TX Sleep example code.

 | ├── … Additional example code.

├──

MAC_802_1
5_4

MAC layer IEEE 802.15.4 code.

├──

MAC_802_1
5_8

MAC layer IEEE 802.15.8 code.

All example applications are named after the feature or set of features they implement.

6.2 Building and running the examples

Selecting the example to build

All examples provide a specific ex_<example number>_<example name>.c source file with a single

project build configuration.

Select the example to build by editing the “..\API\Src\example_selection.h” header file. Each simple

example has a corresponding “#define” (pre-processor macro definition) in this header file. For

example, to build the “ex_00a_reading_dev_id” simple example, the “//” before the “#define

TEST_READING_DEV_ID” would need to be removed. By default, each of the pre-processor macro

definitions that correspond to a simple example are commented out (with a “//” in front of each

line). If there is any confusion as to which pre-processor macro definition needs to be enabled for a

particular simple example, simply look at the source code for the simple example in question. It will

have an “#if defined(<example macro definition>)” near the top of the source file. This is the macro

definition to enable in the “example_selection.h” file to build that simple example.

Build steps for STM32 family

To build and run the code, just unzip the source code and import the project as “Existing Projects

into Workspace” into your ST Workbench IDE. If ST Workbench IDE is already installed on your

machine, you should be able to simply double-click the “.cproject” file and the project will load into

the IDE.

ST Workbench IDE (SW4STM32) and CubeMX project generator can be downloaded from ST

website. [6]

Build steps for nRF52840

To build for nRF52840-DK platform, it’s possible to use CMake. To build using CMake, it is necessary

to have the following software:

• CMake

• ARM GNU Toolchain

https://cmake.org/download/
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

• Ninja

Make sure that Ninja is in your environment path and is executable from command line.

The provided CMake build system supports building the examples and the tests. When all build

targets are selected (default), it will build the test enabled in the examples/example_selection.h

header.

The CMakePresets.json file contains various CMake configuration and build presets, the only

development kit supported with CMake currently is nRF52840-DK.

The preset is called nrf52840_flash.

To list the available presets:

cmake --list-presets

With CMake, the build system needs to be configured before the software can be built. When using

the default generator (Ninja), issue the following to configure the build system with the default build

type (Debug).

cmake --preset=nrf52840_flash

To set another build type (e.g., Release), use the following.

cmake --preset=nrf52840_flash -DCMAKE_BUILD_TYPE=Release

By default, if no build type is selected, the code is optimized for Debug.

The following build types are supported.

• Debug - Minimal optimization, debug info included.

• Release - Maximum optimization for speed.

After the configuration step is done, the project can be built using the following command:

cmake --build --preset nrf52840_flash

The executables will be available in the following path if built for Debug:

simple-examples/build/nrf52840_flash_debug/output/Build_Platforms/nRF52840-DK/

Or in the following path if built for Release:

simple-examples/build/nrf52840_flash_release/output/Build_Platforms/nRF52840-DK/

By default, RTT is used for input/output (logging).

https://github.com/ninja-build/ninja/releases

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

6.3 Examples list

As all examples have been designed to be self-explanatory and quite straightforward to read. The

following is a list of all the examples provided with a brief description of the function of each.

6.3.1 Example 00a: reading device ID

This example is the most basic example which just reads the DW3720 device ID register. This can be

used to test that the SPI communications between host MCU and DW3720 are working correctly.

This example can utilise both available SPI buses on the DW3720.

6.3.2 Example 01a: simple TX

This example application repeatedly sends a hard-coded standard blink frame. Hard-coded delay

between frames is 1 second. This example can utilise both available SPI buses on the DW3720.

6.3.3 Example 01b: TX with sleep

This is a variation of example 1a, where the IC is commanded to sleep and then awoken after the

delay between each frame.

There are two flavours of this example “tx_sleep” and “sleep_idleRC”. In the latter the device

remains in IDLE_RC state after wakeup, and only transitions to IDLE prior to transmission of the

message, staying in IDLE_RC during the programming of TX data and frame control means DW3720

is in a lower power state, and consumes less power than if it was in IDLE state (as in the former

example).

6.3.4 Example 01c: TX with auto sleep

This is a variation of example 1b where the IC automatically goes to sleep after the transmission of a

frame. The IC is still commanded to wake up after the desired sleep period has elapsed before

sending the next frame.

6.3.5 Example 01d: TX with timed sleep

This is a variation of example 1c where the IC automatically wakes up using an internal sleep timer.

Before the IC is put to sleep for the first time, the internal low-power oscillator driving the sleep

counter is calibrated so that the desired sleep time can be properly set through the sleep timer

counter.

6.3.6 Example 01e: TX with CCA

Here we implement a simple Clear Channel Assessment (CCA) mechanism before frame

transmission. The CCA can be used to avoid collisions with other frames on the air.

Note this example is not doing CCA the way a continuous carrier radio would do it by looking for

energy/carrier in the band. It is only looking for preamble so will not detect PHR or data phases of

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

the frame. In a UWB data network it is advised to also do a random back-off before re-transmission

in the event of not receiving acknowledgement to a data frame transmission.

6.3.7 Example 01g: simple TX with STS

This example is very similar to Example 1a, 6.3.1 above, except that it is using STS configuration.

6.3.8 Example 01h: simple TX for PDOA

This example is very similar to Example 1a, 6.3.1 above, except that it is using TX configuration for

PDOA.

6.3.9 Example 01i: simple TX with AES

This example is very similar to Example 1a, 6.3.1 above, except that it is using AES encryption of the

data payload (of 802.15.8 sample frame). The encrypted data is fixed bytes array, but the header is

changing according to the nonce (changing according to counter) and frame sequence number. This

payload is then decrypted by the 6.3.18 companion example.

6.3.10 Example 01j: simple TX for automotive build

This example application repeatedly sends a hard-coded standard blink frame. Hard-coded delay

between frames is 1 second. This example can utilise both available SPI buses on the DW3720.

This example requires the user to enable automotive build within the dw3xxx driver. The

AUTO_PLL_CAL define must be uncommented in the deca_device_api.h file.

The automotive build enables a hardened PLL calibration, with regards to temperature.

6.3.11 Example 02a: simple RX

This example application waits indefinitely for an incoming frame. When a frame is received, it is

read into a local buffer where it can be examined and then the application re-enables the receiver to

start waiting for another frame. It is intended that the simple TX examples (like that in 6.3.1 above)

should be used as a source of frames when running these simple RX examples.

There are two flavours of this example “simple_rx” and “simple_rx_nlos”. In the latter, after the

frame is received and validated based on the diagnostics logged, diagnostic register values are read

and calculations for First Path Power based on the section 4.7.1 and estimating the receive signal

power based on 4.7.2 of the User Manual [2]. The probability of signal being Line of Sight or Non-

Line of Sight is calculated based on the Application Notes "APS006 PART 3” [8] revision (1.1).

6.3.12 Example 02c: simple RX with diagnostics

This is a variation of example 2a where RX frame diagnostic information (first path index, channel

impulse response power) and accumulator (channel impulse response) values are read for each

received frame. This information is read into a local structure where it can be examined.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

6.3.13 Example 02d: RX SNIFF mode

This is a variation of example 2a where the RX SNIFF mode of DW3720 is used. When the receiver is

enabled, it begins preamble-hunt mode with the receiver on. In SNIFF mode, the receiver is not on

all the time, but is sequenced on and off, with a defined duty-cycle. In this example, these durations

are defined to give roughly a 50% duty-cycle, which allows a corresponding reduction in the

preamble-hunt power consumption while still being able to receive frames. It is suggested that the

simple TX example, from 6.3.1 above, is used as a source of frames to test this.

Note: SNIFF mode reduces RX sensitivity depending on the on and off period configurations. Please

see the DW3720 User Manual [2] for more details

6.3.14 Example 02e: Double Buffer RX

This example keeps listening for any incoming frames, storing in a local buffer any frame received

before going back to listening. This example activates interrupt handling and the double buffering

feature of the DW IC (either auto or manual re-enable of receiver can be used). Frame processing is

performed in the RX good frame call-back.

6.3.15 Example 02f: RX with XTAL trimming

This is an example of a receiver that measures the clock offset of a remote transmitter and then uses

the XTAL trimming function to modify the local clock to achieve a target clock offset. Note: To keep a

system stable it is recommended to only adjust trimming at one end of a link.

6.3.16 Example 02g: simple RX with STS

This example is very similar to Example 2a, 6.3.11 above, except that it is using STS configuration.

6.3.17 Example 02h: simple RX with PDOA

This example is very similar to Example 2a, 6.3.11 above, except that it is using PDOA configuration.

This example can utilise both available SPI buses on the DW3720.

6.3.18 Example 02i: simple RX AES

This example application waits indefinitely for an incoming frame (is expects a 802.15.8 sample

frame from companion 6.3.9 example). When a frame is received, it starts to examine the frame

residing in the RX buffer. It checks sizes validity and then extract the header from this buffer.

According to this header and header size, it builds the nonce and get the payload size, before

attempting to decrypt the payload.

6.3.19 Example 02j: simple capture and reading of ADC samples

This example application demonstrates how the ADC samples capture by the devices can be

monitored. It consists in two steps; capturing the ADC samples firstly and then read them and save

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

them in a specific format. Note that the reading and saving to file is supported for nRF52840 target

solely. Refer to the example code for detailed output ADC format.

6.3.20 Example 02k: simple RX and CIR reading test

This example application demonstrates how the dwt_cir can be used to read the channel impulse

response following a successful reception. The CIR content is printed to the standard output (RTT or

UART) in a csv format than can be easily plotted.

6.3.21 Example 03a: TX then wait for a response

This example application is a combination of examples 1a and 2a. This example sends a frame then

waits for a response (with receive timeout enabled). If a response is received, it is stored in a local

buffer for examination and then flow proceeds to the transmission of the next frame. If a response is

not received, the timeout will trigger, and the application will proceed to the next transmission.

6.3.22 Example 03b: RX then send a response

This example application is the complement of example 3a. It waits indefinitely for a frame. When a

frame is received, it is stored in a local buffer. If the received frame is the one transmitted by the

example 3a application, then a response is sent. In any case, when the received frame is processed

this simple example application re-enables the receiver to start waiting again for another frame.

6.3.23 Example 03d: TX then wait for a response using interrupts

This is a variation of example 3a where interrupts and call-backs are used to process received

frames, reception errors and timeouts and transmission confirmation instead of polling with an

infinite loop.

6.3.24 Example 04a: continuous wave mode

This example application activates continuous wave mode for 2 minutes with a predefined

configuration. On a correctly configured spectrum analyser (use configuration values on the picture

below), the output should look like this:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Figure 9: Continuous wave output

6.3.25 Example 04b: continuous frame mode

This example application activates continuous frame mode for 2 minutes with a predefined

configuration. On a correctly configured spectrum analyser (use configuration values on the picture

below), the output should look like this:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Figure 10: Continuous frame output

6.3.26 Example 05a: double-sided two-way ranging (DS TWR) initiator

This is a simple code example that acts as the initiator in a DS TWR distance measurement exchange.

This application sends a “poll” frame (recording the TX time-stamp of the poll), and then waits for a

“response” message expected from the “DS TWR responder” example code (companion to this

application – see section 6.3.27 below). When the response is received its RX time-stamp is recorded

and we send a “final” message to complete the exchange. The final message contains all the time-

stamps recorded by this application, including the calculated/predicted TX time-stamp for the final

message itself. The companion “DS TWR responder” example application works out the time-of-

flight over-the-air and, thus, the estimated distance between the two devices.

Included in this directory in the examples source code is another version of the code described

above that uses STS Mode 1 frames instead of STS Mode 0 frames. This means that the frames that

are sent and received use an STS to compute distance measurements. For more details on STS,

please read the IEEE 802.15.4z documentation.

6.3.27 Example 05b: double-sided two-way ranging (DS TWR) responder

This is a simple code example that acts as the responder in a DS TWR distance measurement

exchange. This application waits for a “poll” message (recording the RX time-stamp of the poll)

expected from the “DS TWR initiator” example code (companion to this application), and then sends

a “response” message recording its TX time-stamp, after which it waits for a “final” message from

the initiator to complete the exchange. The final message contains the remote initiator’s time-

stamps of poll TX, response RX and final TX. With this data and the local time-stamps, (of poll RX,

response TX and final RX), this example application works out a value for the time-of-flight over-the-

air and, thus, the estimated distance between the two devices, which it writes to the LCD.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

Included in this directory in the examples source code is another version of the code described

above that uses STS Mode 1 frames instead of STS Mode 0 frames. This means that the frames that

are sent and received use an STS to compute distance measurements. For more details on STS,

please read the IEEE 802.15.4z documentation.

6.3.28 Example 05c: double-sided two-way ranging with STS (DS TWR STS) initiator

This is an extension based on example 5a (see section 6.3.26 above), except that the STS mode is

also configured. Thus when good frame reception occurs, STS quality is checked and validated before

the STS timestamps are used to work out the range. The companion to this example is DS TWR STS

responder is described in section 6.3.29 below.

6.3.29 Example 05d: double-sided two-way ranging with STS (DS TWR STS)
responder

This is a companion example to DW TWR STS initiator (see section 6.3.28 above) and is based on DW

TWR responder example (see section 6.3.27 above) with the addition of STS.

6.3.30 Example 06a: single-sided two-way ranging (SS TWR) initiator

This is a simple code example that acts as the initiator in a SS TWR distance measurement exchange.

This application sends a “poll” frame (recording the TX time-stamp of the poll), after which it waits

for a “response” message from the “SS TWR responder” example code (companion to this

application) to complete the exchange. The response message contains the remote responder’s

time-stamps of poll RX, and response TX. With this data and the local time-stamps, (of poll TX and

response RX), this example application works out a value for the time-of-flight over-the-air and, thus,

the estimated distance between the two devices, which it writes to the LCD.

Heretofore, we would have recommended use of double-sided TWR (as per examples 5a and 5b)

instead of this single-sided two-way ranging because the SS-TWR time-of-flight estimation typically

suffers poor accuracy due to the clock offset between the two nodes participating in the TWR

exchange. However since driver version 4.0.6 we are now making use of the carrier integrator

diagnostic from the IC (accessible via the new dwt_readcarrierintegrator() API function) to measure

the clock offset and improve the accuracy SS-TWR range estimate calculation.

Included in this directory in the examples source code is another version of the code described

above that uses STS Mode 1 frames instead of STS Mode 0 frames. This means that the frames that

are sent and received use an STS to compute distance measurements. For more details on STS,

please read the IEEE 802.15.4z documentation.

Also included in this directory in the examples source code is another version of the code described

above that uses STS Mode 3 packets instead of STS Mode 0 frames. The “poll” and “response”

messages contain no payload and are only used for computing timestamps using STS. An STS Mode 0

frame is sent from the receiver to the initiator which contains the required timestamp data to

compute distance values in this particular transaction of signals. For more details on STS, please read

the IEEE 802.15.4z documentation.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

6.3.31 Example 06b: single-sided two-way ranging (SS TWR) responder

This is a simple code example that acts as the responder in a SS TWR distance measurement

exchange. This application waits for a “poll” message (recording the RX time-stamp of the poll)

expected from the “SS TWR initiator” example code (companion to this application), and then sends

a “response” message to complete the exchange. The response message contains all the timestamps

recorded by this application, including the calculated/predicted TX time-stamp for the response

message itself. The companion “SS TWR initiator” example application works out the time-of-flight

over-the-air and, thus, the estimated distance between the two devices.

Included in this directory in the examples source code is another version of the code described

above that uses STS Mode 1 frames instead of STS Mode 0 frames. This means that the frames that

are sent and received use an STS to compute distance measurements. For more details on STS,

please read the IEEE 802.15.4z documentation.

Also included in this directory in the examples source code is another version of the code described

above that uses STS Mode 3 packets instead of STS Mode 0 frames. The “poll” and “response”

messages contain no payload and are only used for computing timestamps using STS. An STS Mode 0

frame is sent from the receiver to the initiator which contains the required timestamp data to

compute distance values in this particular transaction of signals. For more details on STS, please read

the IEEE 802.15.4z documentation.

6.3.32 Example 06e: single-sided two-way ranging (SS TWR) initiator with AES

This is a simple code example that acts as the initiator in a SS TWR distance measurement exchange.

This application sends a “poll” frame (recording the TX time-stamp of the poll), after which it waits

for a “response” message from the “SS TWR responder” example code (companion to this

application) to complete the exchange. The response message contains the remote responder’s

timestamps of poll RX, and response TX. With this data and the local time-stamps, (of poll TX and

response RX), this example application works out a value for the time-of-flight over-the-air and, thus,

the estimated distance between the two devices, which it writes to the LCD.

This example uses a simple MAC frame – 802.15.4. It has a source address; destination address and

key index for encryption.

The Initiator sends encrypted tx_poll_msg message to the responder.

The responder will replay with its own encrypted rx_resp_msg, but this time with a different key

index and it will switch between the source address and destination address.

Both Initiator and responder will check if the data is for them, meaning data is encrypted and with

the right source and destination address. The responder puts its time signature results in the first 8

bytes of the rx_resp_msg.

Heretofore, we would have recommended use of double-sided TWR (as per examples 5a and 5b)

instead of this single-sided two-way ranging because the SS-TWR time-of-flight estimation typically

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

suffers poor accuracy due to the clock offset between the two nodes participating in the TWR

exchange. However since driver version 4.0.6 we are now making use of the carrier integrator

diagnostic from the IC (accessible via the new dwt_readcarrierintegrator() API function) to measure

the clock offset and improve the accuracy SS-TWR range estimate calculation.

6.3.33 Example 06f: single-sided two-way ranging responder (SS TWR) with AES

This is a simple code example that acts as the responder in a SS TWR distance measurement

exchange. This application waits for a “poll” message (recording the RX time-stamp of the poll)

expected from the “SS TWR initiator” example code (companion to this application), and then sends

a “response” message to complete the exchange. The response message contains all the time-

stamps recorded by this application, including the calculated/predicted TX time-stamp for the

response message itself. The companion “SS TWR initiator” example application works out the time-

of-flight over-the-air and, thus, the estimated distance between the two devices.

This example uses a simple MAC frame – 802.15.4. It has a source address, destination address and

key index for encryption.

The Responder replies to the Initiator with encrypted rx_resp_msg message.

The responder replay will be with a different key index and it will switch between the source address

and destination address.

Both Initiator and responder will check if the data is for them, meaning data is encrypted and with

the right source and destination address. The responder puts its time signature results in the first 8

bytes of the rx_resp_msg.

6.3.34 Example 07a: Auto ACK TX

This example, with its companion example 8b below, demonstrates the operation of the IC’s auto-

ACK function. The code here is based on example 3a, except that in this case the transmitted frame

has the AR (acknowledgement request) bit set in the frame control field of the MAC header,

(following the MAC frame definitions of IEEE 802.15.4 [3]), and the turn-around to await response is

immediate, reflecting the ACK response timing of the IC.

6.3.35 Example 07b: Auto ACK RX

This complement to example 8a. Here the Auto ACK feature of IC is activated so that frames sent by

companion example 8a are automatically acknowledged.

6.3.36 Example 11a: Use of SPI CRC

This example shows the use of SPI CRC feature.

6.3.37 Example 13a: Use of DW3XXX GPIO lines

This example demonstrates how to enable the GPIO lines as inputs and output

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

6.3.38 Example 14: OTP Write

This example illustrates how a user can write and verify data to addresses in the OTP memory.

6.3.39 Example 15: LE (Low-Energy) pend

This example illustrates how a user can utilise the “LE Pend” (Low-Energy Pending) features of the

DW3750 device. A TX device will transmit a frame to an RX device. The RX device will acknowledge

this frame (with an ACK frame) if the following conditions are met:

• The TX frame is an IEEE 802.14.5 MAC command frame.

The frame is received from a device with an address that is pre-programmed into the

DW3750 LE_PEND01 or LE_PEND23 registers.

6.3.40 Example 16 PLL Cal

This example will test that the PLL will recalibrate and relock when a significant change in

temperature is detected.

6.3.41 Example 17 Bandwidth Calibration

This example will record the initial PG count (emulating what should be done in factory). The

example will recalibrate the bandwidth given this reference PG count value in a loop over time. The

example should be run in a temperature chamber over a range of operating temperatures. The

device will output a continuous frame for bandwidth monitoring on a spectrum analyser.

6.3.42 Example 18: Timer Example

This example demonstrates how to enable one of DW IC internal timers. In this example TIMER0 is

configured in the repeating mode with period set to approx. 1s. Every second host count of timer

events is printed. Every 20 seconds both host count and DW count of timer event is printed.

6.3.43 Example 19: TX Power Adjustment Example

This example demonstrates how the power adjustment API can be used to perform some

adjustment of TX power depending on TX frame duration.

6.3.44 Example 20: Simple AES

This example demonstrates how the use the AES engine to encrypt/decrypt using the AES-CCM*

standard that is defined in the IEEE 802.15.4 standard [3]. It uses test vectors defined in that

standard also.

6.3.45 Example 21: Linear Tx power example

This example demonstrates how the use dwt_calculate_linear_tx_power API. The test will

decrement the power by steps of 0.25dB until it reached the minimum power that can be calculated.

For each index, the corresponding tx configuration is configured.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

7 APPENDIX 2 – BIBLIOGRAPHY:

[1]
The Decawave DW3000 and DW3720 Data Sheet, which is available on available on

www.decawave.com.

[2]
User Manual DW3000 and DW3720 User Manual which is available on

www.decawave.com.

[3]

IEEE 802.15.4‐2011 or “IEEE Std 802.15.4™‐2015” (Revision of IEEE Std 802.15.4-2017).

IEEE Standard for Local and metropolitan area networks— Part 15.4: Low-Rate Wireless

Personal Area Networks (LR-WPANs). IEEE Computer Society Sponsored by the LAN/MAN

Standards Committee.

Available from http://standards.ieee.org/

[4]
Application note APS023 Part 2: TX Bandwidth and Power Compensation.

This is available on available on www.decawave.com.

[5]
DW3XXX Application Programming Interface with application examples package

downloadable from http://www.decawave.com/support/software

[6] Installation of tools and drivers, www.st.com

[7]
ARIB STD-T91 https://www.arib.or.jp/english/std_tr/telecommunications/desc/std-

t91.html

[8] Application Notes APS003 https://www.decawave.com/application-notes/

Table 27: Bibliography

http://www.decawave.com/
http://www.decawave.com/
http://standards.ieee.org/
http://www.decawave.com/
http://www.decawave.com/support/software
http://www.st.com/
https://www.arib.or.jp/english/std_tr/telecommunications/desc/std-t91.html
https://www.arib.or.jp/english/std_tr/telecommunications/desc/std-t91.html
https://www.decawave.com/application-notes/

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

8 DOCUMENT HISTORY

Table 28: Document History

Revision Date Description

1.0 30th March 2021 Initial release.

1.1 13th April 2021 Updated release with “unified driver” changes.

2.0 12th July 2021 Added the NLOS API, TX power adjustment and GPIO driver changes,

updated various missing references.

2.1 17th August 2021 Updated document to reflect latest changes in Simple Examples project and

dwt_uwb_driver API code. This version is planned to be released alongside

the DW3XXX Release 9.

3.0 15th December 2022 Updated document to reflect state of API as per DW3XXX Release 10.

3.1 6th July 2023 Updated comment regarding reference temperature for dwt_geticreftemp

API.

4.0 10th October 2023 Deprecating dwt_softreset_fcmd and dwt_softreset_no_sema_fcmd

commands.

Adding dwt_calculate_linear_tx_setting API and corresponding example.

Adding dwt_set_pll_config API.

Adding dwt_readcir API.

No need to store driver descriptor in flash and describe it in linker.

Removing section 2.1.1.

4.1 12th October 2023 Adding dwt_configtxrxfcs API

4.2 16th January 2024 Adding:

• dwt_getwslotid

• dwt_settxpower

• dwt_readpllstatus

• dwt_calculate_rssi

• dwt_calculate_first_path_power

Modifying:

• dwt_setdwstate

• dwt_setcallbacks

4.3 24th January 2024 Adding:

• dwt_readcir48

Deprecating dwt_readaccdata

4.4 29th January 2024 Adding:

• dwt_readdiagnostics_acc

4.5 16th February 2024 Removed “Confidential” watermark

4.6 07th June 2024 Adding:

• dwt_convert_tx_power_to_index

• dwt_configureisr

• dwt_setpdoamode

Modifying:

• dwt_xtal_temperature_compensation

• dwt_configure_rf_port

• ull_restoreconfig

4.7 11th June 2024 Modifying:

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

 • dwt_checkidlerc

4.8 18th October 2024 Adding:

dwt_settxcode

dwt_setrxcode

Modifying:

dwt_setplenfine

dwt_restoreconfig

dwt_configuresfdtype

dwt_calculate_linear_tx_setting to dwt_convert_tx_power

dwt_convert_tx_power_to_index

dwt_set_pll_config to dwt_setpllbiastrim

4.9 6th December 2024 Modifying:

 dwt_restoreconfig

 dwt_configtxrxfcs

4.10 27th January 2025 Deprecating:

• dwt_restoreconfig

Adding:

• dwt_restore_common

• dwt_restore_txrx

4.11 27th February 2025 Adding:

• dwt_setpllrxprebufen

Modifying:

• dwt_getpllcalibrationtemperature to dwt_getpllcaltemperature

• dwt_readcir

• dwt_readcir_48b

Updated building steps documentation

4.12 23 April 2025 Adding:

• dwt_getgpiodir

Modifying:

• dwt_read_rx_scratch_data to dwt_read_scratch_data

• dwt_write_rx_scratch_data to dwt_write_scratch_data

• Updating enums for dwt_initialise

9 MAJOR CHANGES

9.1 Release 4.12

Page Change Description

- The document has been updated to reflect the state of APIs as per DW3XXX/QM33XXX release 17 and

dwt_uwb_driver 08.19.02

9.2 Release 4.11

Page Change Description

- The document has been updated to reflect the state of APIs as per DW3XXX/QM33XXX release 16 and

dwt_uwb_driver 08.13.05

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

9.3 Release 4.9

Page Change Description

- The document has been updated to reflect the state of APIs as per DW3XXX/QM33XXX release 15 and

dwt_uwb_driver 08.09.05

9.4 Release 4.8

Page Change Description

- The document has been updated to reflect the state of APIs as per DW3XXX/QM33XXX release 14 and

dwt_uwb_driver 08.07.04

9.5 Release 4.7

Page Change Description

- The document has been updated to reflect the state of APIs as per DW3XXX/QM33XXX release 13.1 and

dwt_uwb_driver 08.02.02.

9.6 Release 4.6

Page Change Description

- The document has been updated to reflect the state of APIs as per DW3XXX/QM33XXX release 13 and

dwt_uwb_driver 08.02.00.

9.7 Release 4.1

Page Change Description

- The document has been updated to reflect the state of APIs as per DW3XXX release 11 and dwt_uwb_driver

08.00.13.

9.8 Release 3.0

Page Change Description

- The document has been updated to reflect the state of APIs as per DW3XXX release 10 and dwt_uwb_driver

07.10.01.

9.9 Release 2.0

Page Change Description

- The document has been updated to cover a whole family of DW3XXX devices, and their APIs.

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

DW3xxx API Guide

© 2025 Qorvo US, Inc. – All Rights Reserved

10 ABOUT DECAWAVE

Decawave is a pioneering fabless semiconductor company whose flagship product, the DW3720, is a

complete, single chip CMOS Ultra-Wideband IC based on the IEEE 802.15.4 standard UWB PHY. This

device is the first in a family of parts.

The resulting silicon has a wide range of standards-based applications for both Real Time Location

Systems (RTLS) and Ultra Low Power Wireless Transceivers in areas as diverse as manufacturing,

healthcare, lighting, security, transport, and inventory and supply-chain management.

For further information on this or any other Decawave product contact a sales representative as

follows: -

Decawave Ltd,

Adelaide Chambers,

Peter Street,

Dublin D08 T6YA,

Ireland.

mailto:sales@decawave.com

http://www.decawave.com/

mailto:sales@decawave.com
http://www.decawave.com/

