* ------------------------------------------------------------------------------ * * DISCLAIMER * * INFINEON'S MODEL TERMS OF USE * * BY DOWNLOADING AND/OR USING THIS INFINEON MODEL ("MODEL"), THE USER * (INCLUDING YOU) AGREES TO BE BOUND BY THE TERMS OF USE HERE STATED. IF USER * DOES NOT AGREE TO ALL TERMS OF USE HERE STATED, USER SHALL NOT DOWNLOAD, * USE OR COPY THE MODEL BUT IMMEDIATELY DELETE IT (TO THE EXTENT THAT IT * WAS DOWNLOADED ALREADY). * * 1. SCOPE OF USE * 1.1 Any use of this Model provided by Infineon Technologies AG is subject * to these Terms of Use. * 1.2 This Model, provided by Infineon, does not fully represent all of the * specifications and operating characteristics of the product to which * this Model relates. * 1.3 This Model only describes the characteristics of a typical product. * In all cases, the current data sheet information for a given product * is the final design guideline and the only actual performance * specification. Although this Model can be a useful tool to evaluate * the product performance, it cannot simulate the exact product performance * under all conditions and it is also not intended to replace * bread-boarding for final verification. * * 2. IMPORTANT NOTICE * 2.1 Infineon Technologies AG ("Infineon") is not and cannot be aware of the * specific application of the Infineon's Model by User. However, Model may * from time to time be used by User in potentially harmful and/or life- * endangering applications such as traffic, logistic, medical, nuclear * or military applications or in other applications where failure of the * Model may predictably cause damage to persons' life or health or to * property (hereinafter "Critical Applications"). * 2.2 User acknowledges that Infineon has not specifically designed or * qualified the Model for Critical Applications that the Model may contain * errors and bugs and that User is required to qualify the Model for * Critical Applications pursuant to the applicable local quality, safety * and legal requirements before permitting or giving access to any such use. * * 3. CONFIDENTIAL INFORMATION * User shall treat ideas, concepts and information incorporated in the * Model, the documentation and the content of this Terms of Use (together * hereinafter "Confidential Information") confidential, not disclose it to * any third party unless otherwise agreed in writing between User and * Infineon, not use it for any other purposes than using the Model for * simulation and testing purposes only. * * 4. WARRANTY * 4.1 User acknowledges that the Model is provided by Infineon under this Terms * of Use is provided free of charge and "AS IS" without any warranty or * liability of any kind and Infineon hereby expressly disclaims any * warranties or representations, whether express, implied, statutory or * otherwise, including but not limited to warranties of workmanship, * merchantability, fitness for a particular purpose, defects in the * Model, or non-infringement of third parties intellectual property rights. * 4.2 Infineon reserves the right to make corrections, deletions, modifications, * enhancements, improvements and other changes to the Model at any time * or to move or discontinue any Model without notice. * * 5. LIABILITY * 5.1 Nothing in this Terms of Use shall limit or exclude Infineon's liability * under mandatory liability laws, for injuries to life, body or health, * for fraudulent concealment of defects in the software, or in cases * of Infineon's intentional misconduct or gross negligence. * 5.2 Without prejudice to Sections 5.1, in cases of Infineon's slight * negligent breach of obligations that restrict essential rights or duties * arising from the nature of this Terms of Use in a way that there is a * risk of non-achievement of the purpose of this Terms of Use or of an * obligation whose observance User regularly may trust in and whereas * compliance with only makes proper execution of this Terms of Use * possible, Infineon's liability shall be limited to the typically, * foreseeable damage. * 5.3 Without prejudice to Sections 8.1 and 8.2, Infineon's liability under * this Agreement shall be excluded in all other cases. * * 6. EXPORT REGULATIONS * The User shall comply with all applicable national and international * laws and regulations, in particular the applicable export control * regulations and sanction programs. The User also agrees not to * export, re-export or transfer any software or technology developed * with or using information, software or technology offered by Infineon, * in violation of any applicable laws or regulations of the competent * authorities. Further, the User shall neither use any products, * information, software and technology offered by Infineon in or in * connection with nuclear technology or weapons of mass destruction * (nuclear, biological or chemical) and carriers thereof nor supply * military consignees. * * 7. TERMINATION OF USE PERMIT * If the User violates these Terms of Use, such User's permit to use * this Model terminates automatically. In addition, Infineon may * terminate the User's permit to use this Model at its discretion and * at any time regardless of any violation of these Terms of Use. In * any of the foregoing events, the User is obliged to immediately destroy * any content that has been downloaded or printed from Infineon's website. * * 8. MISCELLANEOUS * 8.1 These Terms of Use are subject to the laws of the Federal Republic * of Germany with the exception of the United Nations on Purchase * Contracts on the International Sale of Goods dated April 11, 1980 (CISG). * The exclusive place of jurisdiction is Munich, Germany. * 8.2 Should any provision in these Terms of Use be or become invalid, the * validity of all other provisions or agreements shall remain unaffected * thereby. * * ------------------------------------------------------------------------------ * * Title: INFINEON Power Transistors Simulation Models for PSpice * Description: n-channel Transistors * OptiMOS5 120V * Authors: Dr. Elmar Gondro, Tel: +49/89/234-29391 * Sebastian Koch, Tel: +49/89/234-89858 * Email: Elmar.Gondro@Infineon.com * Sebastian.Koch@Infineon.com * Support: Support@Infineon.com * www.Infineon.com/support * * ------------------------------------------------------------------------------ * * This library contains models of the following INFINEON transistors: * * Product DeviceType Level VDSmax/V RDSonmax/mOhm IDmax/A Package L3-ModelName L1-ModelName L0-ModelName * ----------------------------------------------------------------------------------------------------------------------------------------------------- * IAUTN12S5N017 OptiMOS NL 120 1.7 300 HSOF-8.(TOLL) IAUTN12S5N017 IAUTN12S5N017_L1 IAUTN12S5N017_L0 * IAUTN12S5N018G OptiMOS NL 120 1.8 300 HSOG-8.(TOLG) IAUTN12S5N018G IAUTN12S5N018G_L1 IAUTN12S5N018G_L0 * IAUTN12S5N018T OptiMOS NL 120 1.8 300 HDSOP-16.(TOLT) IAUTN12S5N018T IAUTN12S5N018T_L1 IAUTN12S5N018T_L0 * * ------------------------------------------------------------------------------ * * Thermal nodes of level 3 models: * * Tj: Potential (temperature in °C) at junction (typically not connected) * Tcase: Node where boundary condition (external heat sinks) must be connected. * Ideal heat sink can be modeled by using a voltage source stating the * ambient temperature in °C between Tcase and ground. * * ------------------------------------------------------------------------------ * * This file also contains simplified models that are compatible to standard * Spice (Level 0) * * ------------------------------------------------------------------------------ * * History: * DD/MM/YY * 22/08/08 initial version based on "SFET5_120V_NL_IPT017N12NM6_Spice.lib"(Koch) * 22/09/13 ATV products and technology core (S5_120_fa_var) added: (Koch) * IAUTN12S5N017 IAUTN12S5N018G IAUTN12S5N018T * 22/10/20 Level 0 added for all products (Koch) * * ------------------------------------------------------------------------------ * * S5_120_fa_var: SFET5_120 NL * * ------------------------------------------------------------------------------ * turning off LTspice's default 1 mOhm series damping resistance (R=0) .options Thev_Induc=1 ******************************************************************************** * Level 3 Models ******************************************************************************** .SUBCKT IAUTN12S5N017 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 dVbr=0 dZth=0 Ls=1.5n Ld=1n Lg=3n .PARAM Rs=198u Rg=1.1 Rd=20u Rmet=67u .PARAM Inn=300 Unn=10 Rmax=1.7m gmin=234.36 .PARAM RRf=500m Rrbond=2m Rtb=1.6 g2=998m .PARAM act=27.01 Rsp=0.9 .FUNC Pb(I,dT,Rb) {Rb/(2*Rtb)*(I-limit((dT/(max(I,1n)*Rb)+RRf*I)*g2,0,I))**2} X_1 d1 g s sp Tj S5_120_fa_var PARAMS: a={act} dVth={dVth} dRdson={dRdson} dgfs={dgfs} dC={dC} dVbr={dVbr} + Inn={Inn} Unn={Unn} Rmax={Rmax} gmin={gmin} Rsp={Rsp} Rs={Rs} Rp={Rd} Rmet={Rmet} R_g g1 g {Rg} L_g gate g1 {Lg*if(dgfs==99,0,1)} G_s s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m)-Rmet)} R_sa s1 s 1Meg L_s source s1 {Ls*if(dgfs==99,0,1)} R_da d1 d2 {Rd} L_d drain d2 {Ld*if(dgfs==99,0,1)} R_daux drain d2 10 R_gaux gate g1 10 R_saux source s1 10 G_th 0 Tb VALUE={Pb(abs(I(L_s)),V(Tj,Tcase),Rrbond*(1+(limit((V(Tb)+V(Tj))/2,-200,999)-25)*4m))} C_thb Tb 0 21.95m R_thb Tb Tj {Rtb} R_th1 Tj t1 {1.22m+limit(dZth,0,1)*444.77u} R_th2 t1 t2 {13.35m+limit(dZth,0,1)*4.94m} R_th3 t2 t3 {29.42m+limit(dZth,0,1)*6.83m} R_th4 t3 t4 {52.92m+limit(dZth,0,1)*37.96m} R_th5 t4 Tcase {158.93m+limit(dZth,0,1)*113.99m} C_th1 Tj 0 376.039u C_th2 t1 0 853.711u C_th3 t2 0 3.51m C_th4 t3 0 4.76m C_th5 t4 0 81.725m C_th6 Tcase 0 30m .ENDS ********** .SUBCKT IAUTN12S5N018G drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 dVbr=0 dZth=0 Ls=1.5n Ld=1n Lg=3n .PARAM Rs=218u Rg=1.1 Rd=20u Rmet=67u .PARAM Inn=300 Unn=10 Rmax=1.8m gmin=232.67 .PARAM RRf=500m Rrbond=2m Rtb=1.6 g2=998m .PARAM act=27.01 Rsp=0.9 .FUNC Pb(I,dT,Rb) {Rb/(2*Rtb)*(I-limit((dT/(max(I,1n)*Rb)+RRf*I)*g2,0,I))**2} X_1 d1 g s sp Tj S5_120_fa_var PARAMS: a={act} dVth={dVth} dRdson={dRdson} dgfs={dgfs} dC={dC} dVbr={dVbr} + Inn={Inn} Unn={Unn} Rmax={Rmax} gmin={gmin} Rsp={Rsp} Rs={Rs} Rp={Rd} Rmet={Rmet} R_g g1 g {Rg} L_g gate g1 {Lg*if(dgfs==99,0,1)} G_s s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m)-Rmet)} R_sa s1 s 1Meg L_s source s1 {Ls*if(dgfs==99,0,1)} R_da d1 d2 {Rd} L_d drain d2 {Ld*if(dgfs==99,0,1)} R_daux drain d2 10 R_gaux gate g1 10 R_saux source s1 10 G_th 0 Tb VALUE={Pb(abs(I(L_s)),V(Tj,Tcase),Rrbond*(1+(limit((V(Tb)+V(Tj))/2,-200,999)-25)*4m))} C_thb Tb 0 21.95m R_thb Tb Tj {Rtb} R_th1 Tj t1 {1.22m+limit(dZth,0,1)*444.77u} R_th2 t1 t2 {13.35m+limit(dZth,0,1)*4.94m} R_th3 t2 t3 {29.42m+limit(dZth,0,1)*6.83m} R_th4 t3 t4 {52.92m+limit(dZth,0,1)*37.96m} R_th5 t4 Tcase {158.93m+limit(dZth,0,1)*113.99m} C_th1 Tj 0 376.039u C_th2 t1 0 853.711u C_th3 t2 0 3.51m C_th4 t3 0 4.76m C_th5 t4 0 81.725m C_th6 Tcase 0 30m .ENDS ********** .SUBCKT IAUTN12S5N018T drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 dVbr=0 dZth=0 Ls=2n Ld=2n Lg=3n .PARAM Rs=218u Rg=1.1 Rd=35u Rmet=67u .PARAM Inn=300 Unn=10 Rmax=1.8m gmin=231.06 .PARAM RRf=500m Rrbond=2m Rtb=1.6 g2=830m .PARAM act=27.01 Rsp=0.9 .FUNC Pb(I,dT,Rb) {Rb/(2*Rtb)*(I-limit((dT/(max(I,1n)*Rb)+RRf*I)*g2,0,I))**2} X_1 d1 g s sp Tj S5_120_fa_var PARAMS: a={act} dVth={dVth} dRdson={dRdson} dgfs={dgfs} dC={dC} dVbr={dVbr} + Inn={Inn} Unn={Unn} Rmax={Rmax} gmin={gmin} Rsp={Rsp} Rs={Rs} Rp={Rd} Rmet={Rmet} R_g g1 g {Rg} L_g gate g1 {Lg*if(dgfs==99,0,1)} G_s s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m)-Rmet)} R_sa s1 s 1Meg L_s source s1 {Ls*if(dgfs==99,0,1)} R_da d1 d2 {Rd} L_d drain d2 {Ld*if(dgfs==99,0,1)} R_daux drain d2 10 R_gaux gate g1 10 R_saux source s1 10 G_th 0 Tb VALUE={Pb(abs(I(L_s)),V(Tj,Tcase),Rrbond*(1+(limit((V(Tb)+V(Tj))/2,-200,999)-25)*4m))} C_thb Tb 0 21.95m R_thb Tb Tj {Rtb} R_th1 Tj t1 {1.22m+limit(dZth,0,1)*444.77u} R_th2 t1 t2 {13.35m+limit(dZth,0,1)*4.94m} R_th3 t2 t3 {29.42m+limit(dZth,0,1)*6.83m} R_th4 t3 t4 {52.92m+limit(dZth,0,1)*37.96m} R_th5 t4 Tcase {158.93m+limit(dZth,0,1)*113.99m} C_th1 Tj 0 376.039u C_th2 t1 0 853.711u C_th3 t2 0 3.51m C_th4 t3 0 4.76m C_th5 t4 0 81.725m C_th6 Tcase 0 30m .ENDS ******************************************************************************** * Level 1 Models ******************************************************************************** .SUBCKT IAUTN12S5N017_L1 drain gate source PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 dVbr=0 Ls=1.5n Ld=1n Lg=3n .PARAM Rs=198u Rg=1.1 Rd=20u Rmet=67u .PARAM Inn=300 Unn=10 Rmax=1.7m gmin=234.36 .PARAM act=27.01 Rsp=0.9 X_1 d1 g s sp Tj1 S5_120_fa_var PARAMS: a={act} dVth={dVth} dRdson={dRdson} dgfs={dgfs} dC={dC} dVbr={dVbr} + Inn={Inn} Unn={Unn} Rmax={Rmax} gmin={gmin} Rsp={Rsp} Rs={Rs} Rp={Rd} Rmet={Rmet} R_g g1 g {Rg} L_g gate g1 {Lg*if(dgfs==99,0,1)} G_s s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m)-Rmet)} R_sa s1 s 1Meg L_s source s1 {Ls*if(dgfs==99,0,1)} R_da d1 d2 {Rd} L_d drain d2 {Ld*if(dgfs==99,0,1)} R_daux drain d2 10 R_gaux gate g1 10 R_saux source s1 10 E_2 Tj w VALUE={TEMP} V_p Tj1 Tj 0 R_1 Tj Tj1 1u G_power 0 Tj VALUE={V(s1,s)*V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m)-Rmet)+V(g,g1)*V(g,g1)/Rg+V(d1,d2)*V(d1,d2)/Rd+I(V_p)} R_2 w 0 1u .ENDS ********** .SUBCKT IAUTN12S5N018G_L1 drain gate source PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 dVbr=0 Ls=1.5n Ld=1n Lg=3n .PARAM Rs=218u Rg=1.1 Rd=20u Rmet=67u .PARAM Inn=300 Unn=10 Rmax=1.8m gmin=232.67 .PARAM act=27.01 Rsp=0.9 X_1 d1 g s sp Tj1 S5_120_fa_var PARAMS: a={act} dVth={dVth} dRdson={dRdson} dgfs={dgfs} dC={dC} dVbr={dVbr} + Inn={Inn} Unn={Unn} Rmax={Rmax} gmin={gmin} Rsp={Rsp} Rs={Rs} Rp={Rd} Rmet={Rmet} R_g g1 g {Rg} L_g gate g1 {Lg*if(dgfs==99,0,1)} G_s s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m)-Rmet)} R_sa s1 s 1Meg L_s source s1 {Ls*if(dgfs==99,0,1)} R_da d1 d2 {Rd} L_d drain d2 {Ld*if(dgfs==99,0,1)} R_daux drain d2 10 R_gaux gate g1 10 R_saux source s1 10 E_2 Tj w VALUE={TEMP} V_p Tj1 Tj 0 R_1 Tj Tj1 1u G_power 0 Tj VALUE={V(s1,s)*V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m)-Rmet)+V(g,g1)*V(g,g1)/Rg+V(d1,d2)*V(d1,d2)/Rd+I(V_p)} R_2 w 0 1u .ENDS ********** .SUBCKT IAUTN12S5N018T_L1 drain gate source PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 dVbr=0 Ls=2n Ld=2n Lg=3n .PARAM Rs=218u Rg=1.1 Rd=35u Rmet=67u .PARAM Inn=300 Unn=10 Rmax=1.8m gmin=231.06 .PARAM act=27.01 Rsp=0.9 X_1 d1 g s sp Tj1 S5_120_fa_var PARAMS: a={act} dVth={dVth} dRdson={dRdson} dgfs={dgfs} dC={dC} dVbr={dVbr} + Inn={Inn} Unn={Unn} Rmax={Rmax} gmin={gmin} Rsp={Rsp} Rs={Rs} Rp={Rd} Rmet={Rmet} R_g g1 g {Rg} L_g gate g1 {Lg*if(dgfs==99,0,1)} G_s s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m)-Rmet)} R_sa s1 s 1Meg L_s source s1 {Ls*if(dgfs==99,0,1)} R_da d1 d2 {Rd} L_d drain d2 {Ld*if(dgfs==99,0,1)} R_daux drain d2 10 R_gaux gate g1 10 R_saux source s1 10 E_2 Tj w VALUE={TEMP} V_p Tj1 Tj 0 R_1 Tj Tj1 1u G_power 0 Tj VALUE={V(s1,s)*V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m)-Rmet)+V(g,g1)*V(g,g1)/Rg+V(d1,d2)*V(d1,d2)/Rd+I(V_p)} R_2 w 0 1u .ENDS ******************************************************************************** * Level 0 Models ******************************************************************************** .SUBCKT IAUTN12S5N017_L0 drain gate source L_g gate g1 3n L_d drain d1 1n L_s source s1 1.5n R_daux drain d1 10 R_gaux gate g1 10 R_saux source s1 10 R_s s1 s2 198u TC=3m R_g g1 g2 1.1 M_1 d2 g2 s2 s2 DMOS L=1u W=1u .MODEL DMOS NMOS ( KP=480.8 VTO=4.38 THETA=0 VMAX=1.5e5 ETA=0.003 CGDO=1f CGSO=1f CGBO=1f IS=0 LEVEL=3 ) R_d d1 d2 0.91m TC=6m D_bd s2 d2 Dbt .MODEL Dbt D ( BV=125 M=0.5 CJO=4.86n VJ=2 ) R_sp s2 s3 0.9 D_bd1 s3 d2 Dbt1 .MODEL Dbt1 D ( BV=1000 M=0.5 CJO=6.65n VJ=2 ) D_body s2 21 DBODY .MODEL DBODY D ( IS=115.9p N=1.1 RS=0.02u EG=1.12 TT=20n ) R_diode d1 21 0.26m TC=1m .MODEL sw NMOS ( VTO=0 KP=10 LAMBDA=1m CGDO=1f CGSO=1f CGBO=1f IS=0 LEVEL=1 ) M_aux g2 c a a sw L=10u W=10u M_aux2 b d g2 g2 sw L=10u W=10u E_aux c a d2 g2 1 E_aux2 d g2 d2 g2 -1 C_ox b d2 0.75n .MODEL DGD D ( M=0.5 CJO=0.75n VJ=0.5 ) * R_par b d2 1Meg D_gd a d2 DGD * R_par2 d2 a 10Meg C_gs g2 s2 8.2n .ENDS IAUTN12S5N017_L0 ****** .SUBCKT IAUTN12S5N018G_L0 drain gate source L_g gate g1 3n L_d drain d1 1n L_s source s1 1.5n R_daux drain d1 10 R_gaux gate g1 10 R_saux source s1 10 R_s s1 s2 218u TC=3m R_g g1 g2 1.1 M_1 d2 g2 s2 s2 DMOS L=1u W=1u .MODEL DMOS NMOS ( KP=480.8 VTO=4.38 THETA=0 VMAX=1.5e5 ETA=0.003 CGDO=1f CGSO=1f CGBO=1f IS=0 LEVEL=3 ) R_d d1 d2 0.91m TC=6m D_bd s2 d2 Dbt .MODEL Dbt D ( BV=125 M=0.5 CJO=4.86n VJ=2 ) R_sp s2 s3 0.9 D_bd1 s3 d2 Dbt1 .MODEL Dbt1 D ( BV=1000 M=0.5 CJO=6.65n VJ=2 ) D_body s2 21 DBODY .MODEL DBODY D ( IS=115.9p N=1.1 RS=0.02u EG=1.12 TT=20n ) R_diode d1 21 0.26m TC=1m .MODEL sw NMOS ( VTO=0 KP=10 LAMBDA=1m CGDO=1f CGSO=1f CGBO=1f IS=0 LEVEL=1 ) M_aux g2 c a a sw L=10u W=10u M_aux2 b d g2 g2 sw L=10u W=10u E_aux c a d2 g2 1 E_aux2 d g2 d2 g2 -1 C_ox b d2 0.75n .MODEL DGD D ( M=0.5 CJO=0.75n VJ=0.5 ) * R_par b d2 1Meg D_gd a d2 DGD * R_par2 d2 a 10Meg C_gs g2 s2 8.2n .ENDS IAUTN12S5N018G_L0 ****** .SUBCKT IAUTN12S5N018T_L0 drain gate source L_g gate g1 3n L_d drain d1 2n L_s source s1 2n R_daux drain d1 10 R_gaux gate g1 10 R_saux source s1 10 R_s s1 s2 218u TC=3m R_g g1 g2 1.1 M_1 d2 g2 s2 s2 DMOS L=1u W=1u .MODEL DMOS NMOS ( KP=480.8 VTO=4.38 THETA=0 VMAX=1.5e5 ETA=0.003 CGDO=1f CGSO=1f CGBO=1f IS=0 LEVEL=3 ) R_d d1 d2 0.92m TC=6m D_bd s2 d2 Dbt .MODEL Dbt D ( BV=125 M=0.5 CJO=4.86n VJ=2 ) R_sp s2 s3 0.9 D_bd1 s3 d2 Dbt1 .MODEL Dbt1 D ( BV=1000 M=0.5 CJO=6.65n VJ=2 ) D_body s2 21 DBODY .MODEL DBODY D ( IS=115.9p N=1.1 RS=0.02u EG=1.12 TT=20n ) R_diode d1 21 0.26m TC=1m .MODEL sw NMOS ( VTO=0 KP=10 LAMBDA=1m CGDO=1f CGSO=1f CGBO=1f IS=0 LEVEL=1 ) M_aux g2 c a a sw L=10u W=10u M_aux2 b d g2 g2 sw L=10u W=10u E_aux c a d2 g2 1 E_aux2 d g2 d2 g2 -1 C_ox b d2 0.75n .MODEL DGD D ( M=0.5 CJO=0.75n VJ=0.5 ) * R_par b d2 1Meg D_gd a d2 DGD * R_par2 d2 a 10Meg C_gs g2 s2 8.2n .ENDS IAUTN12S5N018T_L0 ****** ******************************************************************************** * Technology Models ******************************************************************************** .SUBCKT S5_120_fa_var dd g s0 sp Tj PARAMS: a=1 dVth=0 dRdson=0 dgfs=0 dC=0 dVbr=0 + Inn=1 Unn=1 Rmax=0 gmin=1 Rsp=1 Rs=1 Rp=1 Rmet=1u * corner parameters .PARAM dVthmax=0.5 dCmax=0.3 dVbrmax=5 * technology parameters .PARAM Fm=0.2 Fn=0.5 al=0.5 .PARAM c=1.12 Vth0=4.56 auth=3.5m .PARAM dvx=550m dvgs=200m auth_sub=3.5m .PARAM UT=100m ab=60m lB=-23 UB=124 .PARAM b0=20 p0=9.73 p1=-31.4m p2=50u .PARAM Rd=23.1m nmu=3.08 Tref=298 T0=273 lnIsj=-26.5 .PARAM ndi=1.1 nisj=2.24 Rdi=5.3m nmu2=0 .PARAM td=25n ta=25n .PARAM Rf=0.35 nmu3=1.0 rpara=300u .PARAM kbq=86.2u * Cgs .PARAM f3=253p f3b=0 * Cgfp .PARAM f3a=50p * Cds .PARAM qs1=35.5p qs2=126.0p qs3=-27.0m .PARAM qs4=44.3p qs5=-0.690 .PARAM q81=44.7p f2r=1.31 .PARAM x0=36.8 x1=79.4 dx={x1-x0} * Cgd .PARAM ps0=15p ps1=6.82p ps2=-0.430 .PARAM ps3=34.2p ps4=-65.1m ps5=0.535p .PARAM ps6=6p f5=1.4p .PARAM x2=28.4 x3=71.4 dx2={x3-x2} .PARAM Vth={Vth0+dVthmax*dVth} .PARAM q0={b0*((T0/Tref)**nmu3)*a} .PARAM q1={(Unn-Inn*Rs-Vth0)*q0} .PARAM q2={(Fm*sqrt(0.4)-c)*Inn*q0} .PARAM Rlim={(q1+2*q2*Rmax-sqrt(max(q1**2+4*q2,0)))/(2*q2)} .PARAM dRd={Rd/a+if(dVth==0,limit(dRdson,0,1)*max(Rlim-Rd/a-Rs-Rp,0),0)} .PARAM bm={c/((1/gmin-Rs)**2*Inn*a*(T0/Tref)**nmu3)} .PARAM bet={b0+(b0-bm)*if(dRdson==0,if(dVth==0,limit(dgfs,-1,0),0),0)} .PARAM dC1={1+dCmax*limit(dC,0,1)} * .PARAM dC2={1+1.5*dCmax*limit(dC,0,1)} .PARAM Cgs0={(f3*a+sqrt(a)*f3b)*dC1} .PARAM Cgs1={f3a*a*dC1} .PARAM dRdi={Rdi/a} .PARAM Cox1={(ps1*a+ps0*sqrt(a))*dC1} .PARAM Cox2={ps3*a*dC1} .PARAM Cox3={(ps5*a+ps6)*dC1} .PARAM Cox4={(f5*a+(ps5*a+ps6))*dC1} .PARAM Cds0={qs1*a*dC1} .PARAM Cds1={qs2*(1+f2r/sqrt(a))*a*dC1} .PARAM Cds2={qs4*a*dC1} .PARAM Cds3={(q81+qs1)*a*dC1} * .FUNC VBR(Usps) {max(UB+min(Usps,dUmax)*s1+max(Usps-dUmax,0)*s2,Umin)} .FUNC VBR(Usps) {UB+dVbrmax*dVbr} .FUNC Ue(g,y,w) {(g-Vth+auth*(w-Tref)+Fm*y**Fn)} .FUNC Ue1(g,y,w) {Ue(g,y,w)+(1+limit(Ue(g,y,w)+dvx,0,1)**2*(2*limit(Ue(g,y,w)+dvx,0,1)-3))*(dvgs+(auth_sub-auth)*(w-Tref))} .FUNC Ia(Uee,p,pp,z1) {if(Uee>pp,(Uee-c*z1)*z1,p*(pp-p)/c*exp((Uee-pp)/p))} .FUNC Ih(Uds,T,p,Uee) {bet*(T0/T)**nmu3*Ia(Uee,p,min(2*p,p+c*Uds),min(Uds,Uee/(2*c)))} .FUNC Jh(d,g,w,y,s,x) {a*((Ih(s*y+min(d,0),w,(p0+(p1+p2*w)*w)*kbq*w,Ue1(g,y,w))+exp(min(lB+(d-UB-ab*(w-Tref))/UT,24))))} .FUNC Idiode(Usd,Tj,Iss) {exp(min(log(Iss)+Usd/(ndi*kbq*Tj),7))-Iss} .FUNC Idiod(Usd,Tj) {a*Idiode(Usd,Tj,exp(min(lnIsj+(Tj/Tref-1)*1.12/(ndi*kbq*Tj),7))*(Tj/Tref)**nisj)} .FUNC Pr(Vss0,Vssp) {Vss0*Vss0/max(Rmet,1u)+Vssp*Vssp/Rsp} .FUNC QCds(x) {Cds3*min(x,x1)+Cds0*max(x-x1,0)+(Cds3-Cds0)*((limit(x,x0,x1)-x0)**3/(dx*dx)*((limit(x,x0,x1)-x0)/(2*dx)-1))} .FUNC QCdg(x) {Cox4*min(x,x3)+Cox3*max(x-x3,0)+(Cox4-Cox3)*((limit(x,x2,x3)-x2)**3/(dx2*dx2)*((limit(x,x2,x3)-x2)/(2*dx2)-1))} E_Edg1 d ox VALUE {if(V(d,g)>0,V(d,g)-(exp(ps2*max(V(d,g),0))-1)/ps2,0)} C_Cdg1 ox g {Cox1} E_Edg2 d ox1 VALUE {if(V(d,g)>0,V(d,g)-(exp(ps4*max(V(d,g),0))-1)/ps4,0)} C_Cdg2 ox1 g {Cox2} E_Edg3 d ox2 VALUE {V(d,g)-QCdg(V(d,g))/Cox4} C_Cdg3 ox2 g {Cox4} E_Eds d edep VALUE {V(d,s)-QCds(V(d,s))/Cds3} C_Cds edep s {Cds3/2} E_Eds1 d edep1 VALUE {V(d,sp)-QCds(V(d,sp))/Cds3} C_Cds1 edep1 sp {Cds3/2} E_Eds2 d edep2 VALUE {if(V(d,sp)>0,V(d,sp)-(exp(qs5*max(V(d,sp),0))-1)/qs5,0)} C_Cds2 edep2 sp {Cds2} E_Eds3 d edep3 VALUE {if(V(d,sp)>0,V(d,sp)-(exp(qs3*max(V(d,sp),0))-1)/qs3,0)} C_Cds3 edep3 sp {Cds1} C_Cgs g s {Cgs0} C_Cgs1 g sp {Cgs1} R_fp s sp {Rsp} G_chan d5a s VALUE={Jh(V(d5a,s),V(g,s),T0+limit(V(Tj),-200,300),(sqrt(1+4*al*abs(V(d5a,s)))-1)/2/al,sgn(V(d5a,s)),V(sp,s))} R_d06 d5a d5 1u V_sm d d5 0 G_RMos d1 d VALUE={V(d1,d)/(Rf*dRd+(1-Rf)*dRd*((limit(V(Tj),-200,999)+T0)/Tref)**nmu)/(1+rpara*(I(V_sense)/a)**2)} V_sense dd d1 0 G_diode s d3 VALUE={Idiod(V(s,d3),T0+limit(V(Tj),-200,499))} G_Rdio d2 d1 VALUE={V(d2,d1)/(dRdi*((limit(V(Tj),-200,999)+T0)/Tref)**nmu2)} V_sense2 d2 d3 0 * includes RevRec, but has no Tj dependence... * D_body s d3 dbody * .model dbody D ( BV={UB*10} CJO={Cds0/100} TT={ta} IS={a*exp(lnIsj)} m=0.3 RS={dRdi*1m} n={ndi} XTI={nisj} ) R_1 g s 1G R_d01 d s 500Meg R_d02 d2 s 500Meg R_d03 d1 d 1k R_ssp g sp 100Meg R_met s s0 {Rmet} G_th 0 Tj VALUE={(I(V_sense)-I(V_sense2))*V(d1,d)+I(V_sm)*V(d,s)+I(V_sense2)*V(d1,s)+Pr(V(s,s0),V(s,sp))} .ENDS