.subckt VOM1271 A K P N D1 A K CAP D2 A 1 LED R1 A 1 2.4e6 R2 1 K 10m tc=-3m5, -18u C1 V A 0p1 C2 N K 2pa G1 N V 1 K 155m D3 V N PV n=11 I1 V N TBL(0 0 0.3 80n 0.6 0u8 18 3u) D4 V P Do Q1 N V P Qo .model CAP d Rs=1 Cjo=100p M=1.2 Vj=0.4 + Is=1e-30 N=20 ; disable diode .model LED d Is=0n6 Rs=30m N=3.17 Xti=41 Eg=0.8 .model PV d Is=60p Rs=0.3 N=2.5 Cjo=20p Xti=45 Eg=0.5 .model Do d Is=5f Rs=8 N=1.7 Cjo=1p .model Qo pnp Is=1f Bf=200 Xtb=1.5 Vaf=100 BVbe=6.2 + Rb=200 Rc=10 Re=8 Cjc=0p5 Cje=1p .ends VOM1271 ********************************************************************* * (C) Copyright TOSHIBA CORPORATION 2016 * Date : 30/08/2016 * File Name : TK290P65Y.lib * Part Number : TK290P65Y * Parameter Ver. : Ver.1 * Simulator : PSpice * Model Call Name : NMOS_TK290P65Y * TNOM : 25 degree * Pin Assign : 1=Drain 2=Gate 3=Source * * Operation of this model has been verified only on the OrCAD. ********************************************************************* .SUBCKT NMOS_TK290P65Y 1 2 3 M0 1 22 3 3 smsmosfet + L = 5e-06 + W = 0.3 + AD = 3e-07 + AS = 3e-07 + PD = 0.6 + PS = 0.6 D0 3 1 DDS1 D1 3 1 DDS2 D2 2 10 DGS1 D3 3 10 DGS2 R2 10 2 1E+009 R3 10 3 1E+009 RG 2 22 32.0 .MODEL smsmosfet NMOS + LEVEL = 7 + MOBMOD = 1 + CAPMOD = 3 + NOIMOD = 1 + TOX = 1.5e-08 + XJ = 1.5E-007 + NCH = 1.7E+017 + NGATE = 0 + RSH = 0 + TNOM = 25 + VTH0 = 4.115 + VOFF = -0.08 + NFACTOR = 7 + U0 = 3761 + K1 = 0.5 + K2 = 0 + K3 = 80 + K3B = 0 + W0 = 2.5E-006 + NLX = 1.74E-007 + DVT0 = 2.2 + DVT1 = 0.53 + DVT2 = -0.032 + DVT0W = 0 + DVT1W = 5.3E+006 + DVT2W = -0.032 + DWG = 0 + DWB = 0 + UA = 7.3481e-10 + UB = 5.87E-019 + UC = -4.65E-011 + VSAT = 10788 + A0 = 0.182 + AGS = 8.08 + B0 = 0 + B1 = 0 + KETA = -0.047 + A1 = 0 + A2 = 1 + DELTA = 0.14643 + RDSW = 64500 + PRWG = 0 + PRWB = 0 + WR = 1 + CDSC = 2.4E-004 + CDSCD = 0 + CDSCB = 0 + CIT = 0 + ETA0 = 0.08 + ETAB = -0.07 + DSUB = 0.56 + PCLM = 1.4547 + PDIBLC1 = 0.39 + PDIBLC2 = 0.010996 + PDIBLCB = 0 + DROUT = 0.56 + PSCBE1 = 4.24E+008 + PSCBE2 = 1E-009 + PVAG = 0 + ALPHA0 = 0 + ALPHA1 = 0 + BETA0 = 30 + NJ = 1 + JS = 0 + XPART = 0 + CGSO = 2.6363e-12 + CGDO = 9.8506e-12 + CGBO = 0 + CGDL = 6.4251e-09 + CGSL = 1.6856e-13 + CKAPPA = 0.47 + CF = 0 + CLC = 1E-007 + CLE = 0.6 + VOFFCV = 0 + NOFF = 1 + DLC = 0 + ACDE = 1 + MOIN = 15 + CJ = 0 + CJSW = 1E-012 + CJSWG = 1E-012 + PB = 1 + PBSW = 1 + PBSWG = 1 + MJ = 0.5 + MJSW = 0.33 + MJSWG = 0.33 + AF = 1 + EF = 1 + KF = 0 + UTE = -1.0 + KT1 = -1.3 + KT1L = 0 + KT2 = 0.022 + UA1 = 4.31E-009 + UB1 = -7.61E-018 + UC1 = -5.6E-011 + AT = 10000 + PRT = 150000 + XTI = 3 + TCJ = 0 + TPB = 0 + TCJSW = 0 + TPBSW = 0 + TCJSWG = 0 + TPBSWG = 0 + DWC = 0.094 .MODEL DDS1 D + TNOM = 25 + IS = 1e-07 + RS = 0.040449 + N = 1.9507 + CJO = 1.2e-08 + VJ = 1.4 + M = 0.9 + XTI = -10 + TT = 5.2e-07 + BV = 650 + IBV = 0.01 .MODEL DDS2 D + TNOM = 25 + IS = 1e-07 + RS = 0.040449 + N = 1.9507 + CJO = 1e-15 + VJ = 0.7 + M = 0.3 + XTI = -10 + TT = 5.2e-07 .MODEL DGS1 D + TNOM = 25 + IS = 1E-015 .MODEL DGS2 D + TNOM = 25 + IS = 1E-015 .ENDS ******************************************************************* ******STMicroelectronics MOSFET, IGBT and Bipolar Library ********* ******************************************************************* * * * Models provided by STMicroelectronics are not guaranteed to * * fully represent all the specifications and operating * * characteristics of the product behavior that they reproduce. * * The model describes the characteristics of a typical device. * * In all cases, the current product data sheet contains all * * information to be used like final design guidelines and the * * only actual performance specification. * * Altough models can be a useful tool in evaluating device * * performance, they cannot model exact device performance under * * all conditions. * * STMicroelectronics therefore does not assume any * * responsibility arising from their use. * * STMicroelectronics reserves the right to change models * * without prior notice. * * * * Rev 3.1 - 04 NOV 2013 * ******************************************************************* .SUBCKT STD18N55M5_V2 1 2 3 ******************************************************************* E1 Tj val_T VALUE={TEMP} R1 val_T 0 1E-03 ******************************************************************* Rtk Tj 0 1E10 Rtk1 Tj 0 1E10 ******************************************************************* Ld 1 d1k 0.1E-09 RLd 1 d1k 10 Ls ss 3 0.1E-09 RLs ss 3 10 Lg 2 g2 0.1E-09 RLg 2 g2 10 Rg1 g2 g {rg} ******************************************************************* .PARAM Area=1 BVDSS=1 Raval=0.25 ******************************************************************* .PARAM Rg=1.7 Vth0=4.85 .PARAM Lambda=0.009 .PARAM KpSat0=35 KpLin0=23 Drs=0.202 .PARAM Rd=0.125 .PARAM Rpa=0.025E-04 ******************************************************************* .PARAM Unt=-1.8 Vthx=3.5E-03 Ksat=-1 Klin=-5 .PARAM A=1 B=1 Rx=3.55 E_soglia soglia 0 value {vth1(V(TJ))} R_soglia soglia 0 1 ******************************************************************* .FUNC r_s(T) {((T+273)/300)**(unt)/drs} .FUNC vth1(x) {vth0-vthx*(x-27)} .FUNC kpsat(x) {kpsat0*((x+273)/300)**(ksat)} .FUNC kplin(x) {kplin0*((x+273)/300)**(klin)} .FUNC un(T) {b*((T+273)/300)**(unt)} ******************************************************************* Gmos d s value {Area*(IF(V(d,s)>0,(IF(v(g,s)pp,(Uee-fpar2*z1)*z1,p*(pp-p)/fpar2*EXP((Uee-pp)/p))} .FUNC fpar25(Uds,p,Uee,z1,Tjx) {(fpar22/(1+fpar1*Uee)*(fpar29/Tjx)**muth)*fpar24(Uee,p,MIN(2*p,p+fpar2*Uds),z1)} .FUNC fpar28(Uds,Ugs,Tjx,p) {fpar25(Uds,p,Ugs-Vth+fpar3*(Tjx-fpar29),MIN(Uds,(Ugs-Vth+fpar3*(Tjx-fpar29))/(2*fpar2)),Tjx)} .FUNC fpar26(Uds,Tjx) {act*EXP(MIN(fpar19+(Uds-fpar6-fpar4*(Tjx-fpar29))/fpar7,23))} .FUNC fpar27(Uds,Ugs,Tjx) {sgn(Uds)*fpar28((SQRT(1+4*fpar12*abs(Uds))-1)/2/fpar12,Ugs,Tjx,fpar9*fpar18*Tjx)} * R1 g s 1G G_G1 d s VALUE={fpar27(V(d,s),V(g,s),Tref+LIMIT(V(Tj),-200,999))} Rd01 d s 500Meg * V_Ichannel d1 d 0 V_Iepi dd d2 0 * G_G_Rd d2 d1 VALUE + {V(d2,d1)/( + (1-fpar17) + *((dRd*0.5*(1+SQRT(1+4*(MAX(V(d2,d1),0)/fpar15)**(LIMIT(2+fpar16*(V(t1)+Tref-fpar29),0,3))))) + *((Tref+LIMIT(V(t1),-200,999))/fpar29)**fpar10) + + (fpar17)*((dRd*0.5*(1+SQRT(1+4*(MAX(V(d2,d1),0)/fpar15)**(LIMIT(2+fpar16*(V(t1)+Tref-fpar29),0,3)))))))} * R_R_ERd_g d2 d1 10k * G_Rdiod dd dio2 VALUE {V(dd,dio2)/(fpar14*((Tref+LIMIT(V(t1),-200,999))/fpar29)**fpar23)} R_Rdiod dd dio 500Meg V_Idiode dio2 dio 0 * Dbody s di DBODY .MODEL DBODY D(IS={fpar21*act} N={fpar20} RS=2u EG=1.12 TT={tt}) * Rd02 s di 500Meg G_diode2 s di VALUE={-fpar26(V(di,s),Tref+LIMIT(V(t1),-200,999))} V_Idio dio di 0 * *Capacitance model: *Cgd .PARAM cgdvgg=-0.1 cgducut=100 .PARAM cgda1={130p*act} cgdb1=-1.7 cgdC1_0={cgda1*EXP(cgdb1*cgdvgg)} .PARAM cgda2={80p*act} cgdb2=-0.12 cgdC2_0={cgda2*EXP(cgdb2*cgdvgg)} .PARAM cgda3={4p*act} cgdb3=-4 cgdc3=40 cgdC3_0={1/2*cgda3*(1+TANH((cgdvgg-cgdc3)/cgdb3))} .PARAM cgda4={1.2p*act} cgdb4=200 cgdc4=400 cgdC4_0={1/2*cgda4*(1+TANH((cgdvgg-cgdc4)/cgdb4))} .PARAM cgda5={0.001p*p666} cgdC5_0={cgda5} .PARAM cgda6={0.3p*p666} cgdb6=-600 cgdc6=40 cgdC6_0={1/2*cgda6*(1+TANH((cgdvgg-cgdc6)/cgdb6))} *Cds .PARAM cdsvgg=0 cdsucut=100 .PARAM cdsa1={400p*act} cdsb1=-0.3 cdsC1_0={cdsa1*EXP(cdsb1*cdsvgg)} .PARAM cdsa2={260p*act} cdsb2=-0.05 cdsC2_0={cdsa2*EXP(cdsb2*cdsvgg)} .PARAM cdsa3={0p*act} cdsb3=1 cdsc3=1 cdsC3_0={1/2*cdsa3*(1+TANH((cdsvgg-cdsc3)/cdsb3))} .PARAM cdsa4={5p*act} cdsb4=-700 cdsc4=300 cdsC4_0={1/2*cdsa4*(1+TANH((cdsvgg-cdsc4)/cdsb4))} .PARAM cdsa5={0.001p*p666} cdsC5_0={cdsa5} .PARAM cdsa6={0.7p*p666} cdsb6=-700 cdsc6=300 cdsC6_0={1/2*cdsa6*(1+TANH((cdsvgg-cdsc6)/cdsb6))} *Cgs .PARAM cgs={act*110p} .FUNC cgdQges1(U) {cgda1/cgdb1 * (EXP(cgdb1*U)-1)} .FUNC cgdQges2(U) {cgda2/cgdb2 * (EXP(cgdb2*U)-1)} .FUNC cgdQges3(U) {IF (U< cgducut, cgda3*U/2 + 1/2*cgda3*cgdb3*LOG10(COSH((U-cgdc3)/cgdb3))/loge + - 1/2*cgda3*cgdb3*LOG10(COSH((-cgdc3)/cgdb3))/loge, + cgda3*cgducut/2 + 1/2*cgda3*cgdb3*LOG10(COSH((cgducut-cgdc3)/cgdb3))/loge + - 1/2*cgda3*cgdb3*LOG10(COSH((-cgdc3)/cgdb3))/loge)} .FUNC cgdQges4(U) {cgda4*U/2 + 1/2*cgda4*cgdb4*LOG10(COSH((U-cgdc4)/cgdb4))/loge + - 1/2*cgda4*cgdb4*LOG10(COSH((-cgdc4)/cgdb4))/loge} .FUNC cgdQges5(U) {cgda5*U} .FUNC cgdQges6(U) {cgda6*U/2 + 1/2*cgda6*cgdb6*LOG10(COSH((U-cgdc6)/cgdb6))/loge + - 1/2*cgda6*cgdb6*LOG10(COSH((-cgdc6)/cgdb6))/loge} *Cgd with voltage source E1cgd cgdhigh cgdnint1 VALUE { MAX(V(cgdhigh,cgdlow),cgdvgg) - cgdQges1(MAX(V(cgdhigh,cgdlow),cgdvgg))/cgdC1_0} C1cgd cgdnint1 cgdlow {cgdC1_0} * E2cgd cgdhigh cgdnint2 VALUE { MAX(V(cgdhigh,cgdlow),cgdvgg) - cgdQges2(MAX(V(cgdhigh,cgdlow),cgdvgg))/cgdC2_0} C2cgd cgdnint2 cgdlow {cgdC2_0} * E3cgd cgdhigh cgdnint3 VALUE { MAX(V(cgdhigh,cgdlow),cgdvgg) - cgdQges3(MAX(V(cgdhigh,cgdlow),cgdvgg))/cgdC3_0} C3cgd cgdnint3 cgdlow {cgdC3_0} * E4cgd cgdhigh cgdnint4 VALUE { MAX(V(cgdhigh,cgdlow),cgdvgg) - cgdQges4(MAX(V(cgdhigh,cgdlow),cgdvgg))/cgdC4_0} C4cgd cgdnint4 cgdlow {cgdC4_0} * C5cgd cgdhigh cgdlow {cgdC5_0} * E6cgd cgdhigh cgdnint6 VALUE { MAX(V(cgdhigh,cgdlow),cgdvgg) - cgdQges6(MAX(V(cgdhigh,cgdlow),cgdvgg))/cgdC6_0} C6cgd cgdnint6 cgdlow {cgdC6_0} * .FUNC cdsQges1(U) {cdsa1/cdsb1 * (EXP(cdsb1*U)-1)} .FUNC cdsQges2(U) {cdsa2/cdsb2 * (EXP(cdsb2*U)-1)} .FUNC cdsQges3(U) {IF (Upp,(Uee-fpar2*z1)*z1,p*(pp-p)/fpar2*EXP((Uee-pp)/p))} .FUNC fpar25(Uds,p,Uee,z1,Tjx) {(fpar22/(1+fpar1*Uee)*(fpar29/Tjx)**muth)*fpar24(Uee,p,MIN(2*p,p+fpar2*Uds),z1)} .FUNC fpar28(Uds,Ugs,Tjx,p) {fpar25(Uds,p,Ugs-Vth+fpar3*(Tjx-fpar29),MIN(Uds,(Ugs-Vth+fpar3*(Tjx-fpar29))/(2*fpar2)),Tjx)} .FUNC fpar26(Uds,Tjx) {act*EXP(MIN(fpar19+(Uds-fpar6-fpar4*(Tjx-fpar29))/fpar7,23))} .FUNC fpar27(Uds,Ugs,Tjx) {sgn(Uds)*fpar28((SQRT(1+4*fpar12*abs(Uds))-1)/2/fpar12,Ugs,Tjx,fpar9*fpar18*Tjx)} * R1 g s 1G G_G1 d s VALUE={fpar27(V(d,s),V(g,s),Tref+LIMIT(V(Tj),-200,999))} Rd01 d s 500Meg * V_Ichannel d1 d 0 V_Iepi dd d2 0 * G_G_Rd d2 d1 VALUE + {V(d2,d1)/( + (1-fpar17) + *((dRd*0.5*(1+SQRT(1+4*(MAX(V(d2,d1),0)/fpar15)**(LIMIT(2+fpar16*(V(t1)+Tref-fpar29),0,3))))) + *((Tref+LIMIT(V(t1),-200,999))/fpar29)**fpar10) + + (fpar17)*((dRd*0.5*(1+SQRT(1+4*(MAX(V(d2,d1),0)/fpar15)**(LIMIT(2+fpar16*(V(t1)+Tref-fpar29),0,3)))))))} * R_R_ERd_g d2 d1 10k * G_Rdiod dd dio2 VALUE {V(dd,dio2)/(fpar14*((Tref+LIMIT(V(t1),-200,999))/fpar29)**fpar23)} R_Rdiod dd dio 500Meg V_Idiode dio2 dio 0 * Dbody s di DBODY .MODEL DBODY D(IS={fpar21*act} N={fpar20} RS=2u EG=1.12 TT={tt}) * Rd02 s di 500Meg G_diode2 s di VALUE={-fpar26(V(di,s),Tref+LIMIT(V(t1),-200,999))} V_Idio dio di 0 * *Capacitance model: *Cgd .PARAM cgdvgg=-0.1 cgducut=100 .PARAM cgda1={130p*act} cgdb1=-1.7 cgdC1_0={cgda1*EXP(cgdb1*cgdvgg)} .PARAM cgda2={80p*act} cgdb2=-0.12 cgdC2_0={cgda2*EXP(cgdb2*cgdvgg)} .PARAM cgda3={4p*act} cgdb3=-4 cgdc3=40 cgdC3_0={1/2*cgda3*(1+TANH((cgdvgg-cgdc3)/cgdb3))} .PARAM cgda4={1.2p*act} cgdb4=200 cgdc4=400 cgdC4_0={1/2*cgda4*(1+TANH((cgdvgg-cgdc4)/cgdb4))} .PARAM cgda5={0.001p*p666} cgdC5_0={cgda5} .PARAM cgda6={0.3p*p666} cgdb6=-600 cgdc6=40 cgdC6_0={1/2*cgda6*(1+TANH((cgdvgg-cgdc6)/cgdb6))} *Cds .PARAM cdsvgg=0 cdsucut=100 .PARAM cdsa1={400p*act} cdsb1=-0.3 cdsC1_0={cdsa1*EXP(cdsb1*cdsvgg)} .PARAM cdsa2={260p*act} cdsb2=-0.05 cdsC2_0={cdsa2*EXP(cdsb2*cdsvgg)} .PARAM cdsa3={0p*act} cdsb3=1 cdsc3=1 cdsC3_0={1/2*cdsa3*(1+TANH((cdsvgg-cdsc3)/cdsb3))} .PARAM cdsa4={5p*act} cdsb4=-700 cdsc4=300 cdsC4_0={1/2*cdsa4*(1+TANH((cdsvgg-cdsc4)/cdsb4))} .PARAM cdsa5={0.001p*p666} cdsC5_0={cdsa5} .PARAM cdsa6={0.7p*p666} cdsb6=-700 cdsc6=300 cdsC6_0={1/2*cdsa6*(1+TANH((cdsvgg-cdsc6)/cdsb6))} *Cgs .PARAM cgs={act*110p} .FUNC cgdQges1(U) {cgda1/cgdb1 * (EXP(cgdb1*U)-1)} .FUNC cgdQges2(U) {cgda2/cgdb2 * (EXP(cgdb2*U)-1)} .FUNC cgdQges3(U) {IF (U< cgducut, cgda3*U/2 + 1/2*cgda3*cgdb3*LOG10(COSH((U-cgdc3)/cgdb3))/loge + - 1/2*cgda3*cgdb3*LOG10(COSH((-cgdc3)/cgdb3))/loge, + cgda3*cgducut/2 + 1/2*cgda3*cgdb3*LOG10(COSH((cgducut-cgdc3)/cgdb3))/loge + - 1/2*cgda3*cgdb3*LOG10(COSH((-cgdc3)/cgdb3))/loge)} .FUNC cgdQges4(U) {cgda4*U/2 + 1/2*cgda4*cgdb4*LOG10(COSH((U-cgdc4)/cgdb4))/loge + - 1/2*cgda4*cgdb4*LOG10(COSH((-cgdc4)/cgdb4))/loge} .FUNC cgdQges5(U) {cgda5*U} .FUNC cgdQges6(U) {cgda6*U/2 + 1/2*cgda6*cgdb6*LOG10(COSH((U-cgdc6)/cgdb6))/loge + - 1/2*cgda6*cgdb6*LOG10(COSH((-cgdc6)/cgdb6))/loge} *Cgd with voltage source E1cgd cgdhigh cgdnint1 VALUE { MAX(V(cgdhigh,cgdlow),cgdvgg) - cgdQges1(MAX(V(cgdhigh,cgdlow),cgdvgg))/cgdC1_0} C1cgd cgdnint1 cgdlow {cgdC1_0} * E2cgd cgdhigh cgdnint2 VALUE { MAX(V(cgdhigh,cgdlow),cgdvgg) - cgdQges2(MAX(V(cgdhigh,cgdlow),cgdvgg))/cgdC2_0} C2cgd cgdnint2 cgdlow {cgdC2_0} * E3cgd cgdhigh cgdnint3 VALUE { MAX(V(cgdhigh,cgdlow),cgdvgg) - cgdQges3(MAX(V(cgdhigh,cgdlow),cgdvgg))/cgdC3_0} C3cgd cgdnint3 cgdlow {cgdC3_0} * E4cgd cgdhigh cgdnint4 VALUE { MAX(V(cgdhigh,cgdlow),cgdvgg) - cgdQges4(MAX(V(cgdhigh,cgdlow),cgdvgg))/cgdC4_0} C4cgd cgdnint4 cgdlow {cgdC4_0} * C5cgd cgdhigh cgdlow {cgdC5_0} * E6cgd cgdhigh cgdnint6 VALUE { MAX(V(cgdhigh,cgdlow),cgdvgg) - cgdQges6(MAX(V(cgdhigh,cgdlow),cgdvgg))/cgdC6_0} C6cgd cgdnint6 cgdlow {cgdC6_0} * .FUNC cdsQges1(U) {cdsa1/cdsb1 * (EXP(cdsb1*U)-1)} .FUNC cdsQges2(U) {cdsa2/cdsb2 * (EXP(cdsb2*U)-1)} .FUNC cdsQges3(U) {IF (Upp,(Uee-fpar2*z1)*z1,p*(pp-p)/fpar2*EXP((Uee-pp)/p))} .FUNC fpar25(Uds,p,Uee,z1,Tjx) {(fpar22/(1+fpar1*Uee)*(fpar29/Tjx)**muth)*fpar24(Uee,p,MIN(2*p,p+fpar2*Uds),z1)} .FUNC fpar28(Uds,Ugs,Tjx,p) {fpar25(Uds,p,Ugs-Vth+fpar3*(Tjx-fpar29),MIN(Uds,(Ugs-Vth+fpar3*(Tjx-fpar29))/(2*fpar2)),Tjx)} .FUNC fpar26(Uds,Tjx) {act*EXP(MIN(fpar19+(Uds-fpar6-fpar4*(Tjx-fpar29))/fpar7,23))} .FUNC fpar27(Uds,Ugs,Tjx) {sgn(Uds)*fpar28((SQRT(1+4*fpar12*abs(Uds))-1)/2/fpar12,Ugs,Tjx,fpar9*fpar18*Tjx)} * R1 g s 1G G_G1 d s VALUE={fpar27(V(d,s),V(g,s),Tref+LIMIT(V(Tj),-200,999))} Rd01 d s 500Meg * V_Ichannel d1 d 0 V_Iepi dd d2 0 * G_G_Rd d2 d1 VALUE + {V(d2,d1)/( + (1-fpar17) + *((dRd*0.5*(1+SQRT(1+4*(MAX(V(d2,d1),0)/fpar15)**(LIMIT(2+fpar16*(V(t1)+Tref-fpar29),0,3))))) + *((Tref+LIMIT(V(t1),-200,999))/fpar29)**fpar10) + + (fpar17)*((dRd*0.5*(1+SQRT(1+4*(MAX(V(d2,d1),0)/fpar15)**(LIMIT(2+fpar16*(V(t1)+Tref-fpar29),0,3)))))))} * R_R_ERd_g d2 d1 10k * G_Rdiod dd dio2 VALUE {V(dd,dio2)/(fpar14*((Tref+LIMIT(V(t1),-200,999))/fpar29)**fpar23)} R_Rdiod dd dio 500Meg V_Idiode dio2 dio 0 * Dbody s di DBODY .MODEL DBODY D(IS={fpar21*act} N={fpar20} RS=2u EG=1.12 TT={tt}) * Rd02 s di 500Meg G_diode2 s di VALUE={-fpar26(V(di,s),Tref+LIMIT(V(t1),-200,999))} V_Idio dio di 0 * *Capacitance model: *Cgd .PARAM cgdvgg=-0.1 cgducut=100 .PARAM cgda1={130p*act} cgdb1=-1.7 cgdC1_0={cgda1*EXP(cgdb1*cgdvgg)} .PARAM cgda2={80p*act} cgdb2=-0.12 cgdC2_0={cgda2*EXP(cgdb2*cgdvgg)} .PARAM cgda3={4p*act} cgdb3=-4 cgdc3=40 cgdC3_0={1/2*cgda3*(1+TANH((cgdvgg-cgdc3)/cgdb3))} .PARAM cgda4={1.2p*act} cgdb4=200 cgdc4=400 cgdC4_0={1/2*cgda4*(1+TANH((cgdvgg-cgdc4)/cgdb4))} .PARAM cgda5={0.001p*p666} cgdC5_0={cgda5} .PARAM cgda6={0.3p*p666} cgdb6=-600 cgdc6=40 cgdC6_0={1/2*cgda6*(1+TANH((cgdvgg-cgdc6)/cgdb6))} *Cds .PARAM cdsvgg=0 cdsucut=100 .PARAM cdsa1={400p*act} cdsb1=-0.3 cdsC1_0={cdsa1*EXP(cdsb1*cdsvgg)} .PARAM cdsa2={260p*act} cdsb2=-0.05 cdsC2_0={cdsa2*EXP(cdsb2*cdsvgg)} .PARAM cdsa3={0p*act} cdsb3=1 cdsc3=1 cdsC3_0={1/2*cdsa3*(1+TANH((cdsvgg-cdsc3)/cdsb3))} .PARAM cdsa4={5p*act} cdsb4=-700 cdsc4=300 cdsC4_0={1/2*cdsa4*(1+TANH((cdsvgg-cdsc4)/cdsb4))} .PARAM cdsa5={0.001p*p666} cdsC5_0={cdsa5} .PARAM cdsa6={0.7p*p666} cdsb6=-700 cdsc6=300 cdsC6_0={1/2*cdsa6*(1+TANH((cdsvgg-cdsc6)/cdsb6))} *Cgs .PARAM cgs={act*110p} .FUNC cgdQges1(U) {cgda1/cgdb1 * (EXP(cgdb1*U)-1)} .FUNC cgdQges2(U) {cgda2/cgdb2 * (EXP(cgdb2*U)-1)} .FUNC cgdQges3(U) {IF (U< cgducut, cgda3*U/2 + 1/2*cgda3*cgdb3*LOG10(COSH((U-cgdc3)/cgdb3))/loge + - 1/2*cgda3*cgdb3*LOG10(COSH((-cgdc3)/cgdb3))/loge, + cgda3*cgducut/2 + 1/2*cgda3*cgdb3*LOG10(COSH((cgducut-cgdc3)/cgdb3))/loge + - 1/2*cgda3*cgdb3*LOG10(COSH((-cgdc3)/cgdb3))/loge)} .FUNC cgdQges4(U) {cgda4*U/2 + 1/2*cgda4*cgdb4*LOG10(COSH((U-cgdc4)/cgdb4))/loge + - 1/2*cgda4*cgdb4*LOG10(COSH((-cgdc4)/cgdb4))/loge} .FUNC cgdQges5(U) {cgda5*U} .FUNC cgdQges6(U) {cgda6*U/2 + 1/2*cgda6*cgdb6*LOG10(COSH((U-cgdc6)/cgdb6))/loge + - 1/2*cgda6*cgdb6*LOG10(COSH((-cgdc6)/cgdb6))/loge} *Cgd with voltage source E1cgd cgdhigh cgdnint1 VALUE { MAX(V(cgdhigh,cgdlow),cgdvgg) - cgdQges1(MAX(V(cgdhigh,cgdlow),cgdvgg))/cgdC1_0} C1cgd cgdnint1 cgdlow {cgdC1_0} * E2cgd cgdhigh cgdnint2 VALUE { MAX(V(cgdhigh,cgdlow),cgdvgg) - cgdQges2(MAX(V(cgdhigh,cgdlow),cgdvgg))/cgdC2_0} C2cgd cgdnint2 cgdlow {cgdC2_0} * E3cgd cgdhigh cgdnint3 VALUE { MAX(V(cgdhigh,cgdlow),cgdvgg) - cgdQges3(MAX(V(cgdhigh,cgdlow),cgdvgg))/cgdC3_0} C3cgd cgdnint3 cgdlow {cgdC3_0} * E4cgd cgdhigh cgdnint4 VALUE { MAX(V(cgdhigh,cgdlow),cgdvgg) - cgdQges4(MAX(V(cgdhigh,cgdlow),cgdvgg))/cgdC4_0} C4cgd cgdnint4 cgdlow {cgdC4_0} * C5cgd cgdhigh cgdlow {cgdC5_0} * E6cgd cgdhigh cgdnint6 VALUE { MAX(V(cgdhigh,cgdlow),cgdvgg) - cgdQges6(MAX(V(cgdhigh,cgdlow),cgdvgg))/cgdC6_0} C6cgd cgdnint6 cgdlow {cgdC6_0} * .FUNC cdsQges1(U) {cdsa1/cdsb1 * (EXP(cdsb1*U)-1)} .FUNC cdsQges2(U) {cdsa2/cdsb2 * (EXP(cdsb2*U)-1)} .FUNC cdsQges3(U) {IF (U