***************************************************************** * INFINEON Power Transistors * * Level-1 / 3 PSPICE Library for small signal transistors * * Version 270715 * * * * * * Models provided by Infineon are not warranted by Infineon as * * fully representing all the specifications and operating * * characteristics of the semiconductor product to which the * * model relates. The models describe the characteristics of * * typical devices. * * In all cases, the current data sheet information for a given * * device is the final design guideline and the only actual * * performance specification. * * Although models can be a useful tool in evaluating device * * performance, they cannot model exact device performance under * * all conditions, nor are they intended to replace bread- * * boarding for final verification. INFINEON therefore does not * * assume any liability arising from their use. * * INFINEON reserves the right to change models without prior * * notice. * * * ***************************************************************** * * * BSS131 (n-channel, 240 V enhancement) * * BSS87 (n-channel, 240 V enhancement) * * BSP89 (n-channel, 240 V enhancement) * * BSP88 (n-channel, 240 V enhancement) * * BSP129 (n-channel, 240 V depletion) * * SISC0_97N24D (n-channel, 240 V depletion) * * BSS139 (n-channel, 250 V depletion) * * BSP324 (n-channel, 400 V enhancement) * * SISC1_4N40E (n-channel, 400 V enhancement * * BSP125 (n-channel, 600 V enhancement) * * BSS225 (n-channel, 600 V enhancement) * * BSS127 (n-channel, 600 V enhancement) * * BSP135 (n-channel, 600 V depletion) * * SISC1_4N60D (n-channel, 600 V depletion) * * BSS126 (n-channel, 600 V depletion) * * BSP300 (n-channel, 800 V enhancement, Level 0 only) * * * ***************************************************************** * thermal nodes of level 3 models: * * * * .SUBCKT BSP135 drain gate source Tj Tcase * * Tj : potential=temperature (in °C) at junction (typically * * not connected) * * Tcase/Tsolder_joint : * * node where the boundary contition - external heat * * sinks etc - have to be connected (ideal heat sink * * can be modeled by using a voltage source stating the * * ambient temperature in °C between Tcase and ground. * * * ***************************************************************** .SUBCKT K_240_a_var dd g s Tj PARAMS: a=1 dVth=0 dR=0 dgfs=0 Inn=1 Unn=1 Rmax=1 +gmin=1 Rs=1 Rp=1 dC=0 heat=1 .PARAM Vth0=1.45 beta4c=0.217 ph0=25.7 ph1=0.038 Ubr=290 .PARAM Rd=1.95 nmu=2.6 Rf=0.2 rpa=0.06877 lnIsj=-24.7 .PARAM Rdi=0.2 .PARAM Tref=298 T0=273 auth=3m c=0.82 mu_bet=0.4 .PARAM f_bet=-2 ndi=1.2 UTnbr=207m lnBr=-23 kbq=85.8u .PARAM Wcml={beta4c*4*c} .PARAM aubr={0.93m*UBr} .PARAM dvgs={0.1-0.06*Vth0} .PARAM f1=65p f2=92p f3=198p f4=265p f5=290p .PARAM U0=0.5 nd=0.44 nc=0.5 g1=1.9 bb=-3 .PARAM sl=65p remp=0p ta=60n td=20n .PARAM Vmin=0.8 Vmax=1.8 dCmax=0.35 .PARAM Vth={Vth0+(Vmax-Vth0)*limit(dVth,0,1)-(Vmin-Vth0)*limit(dVth,-1,0)} .PARAM p0={Wcml*a*((1-f_bet)*(T0/Tref)**mu_bet+f_bet) } .PARAM Rlim={(Rmax-Rs-(Unn-Vth0-Inn*Rs-SQRT((Unn-Vth0-Inn*Rs)**2-4*c*Inn/p0))/(2*c*Inn))/(1+rpa*(Inn/a)**2)} .PARAM dRd={Rd/a+if(dVth==0,limit(dR,0,1)*max(Rlim-Rd/a,0),0)} .PARAM bet={Wcml} .PARAM dC1={1+dCmax*limit(dC,0,1)} .PARAM Cox={f1*a*dC1} .PARAM Cds0={f2*a*dC1} .PARAM Cgs0={f3*a*dC1} .PARAM Cox1={f5*a*dC1} .PARAM Crand={remp*SQRT(a)} .PARAM dRdi={Rdi/a} .FUNC U1(Uds,T) {(SQRT(1+4*(0.4+(T-T0-25)*2m)*abs(Uds))-1)/2/(0.4+(T-T0-25)*2m)} .FUNC I2(p,Uee,z1,pp) {if(Uee>pp,(Uee-c*z1)*z1,p*(pp-p)/c*exp((Uee-pp-(min(0,Uee))**2)/p))} .FUNC Ig(Uds,T,p,Uee) {bet*((1-f_bet)*(T0/T)**mu_bet+f_bet)*I2(p,Uee,min(Uds,Uee/(2*c)),min(2*p,p+c*Uds))} .FUNC Iges(Uds,Ugs,T) +{a*(sgn(Uds)*Ig(U1(Uds,T),T,1/(ph0-ph1*T),Ugs-Vth+auth*(T-Tref))+exp(min(lnBr+(abs(Uds)-UBr-aubr*(T-Tref))/UTnbr,25)))} .FUNC Isjt(Tj) {exp(min(lnIsj+(Tj/Tref-1)*1.12/(ndi*kbq*Tj),9))*(Tj/Tref)**1.5} .FUNC Idiode(Usd,Tj,Iss) {exp(min(log(Iss)+Usd/(ndi*kbq*Tj),9))-Iss} .FUNC Idiod(Usd,Tj) {a*Idiode(Usd,Tj,Isjt(Tj))} .FUNC QCdg(x,z) {if(f4>f5,(f5**2-(f4-z*sl)**2)/(2*sl)+f5*min(x,(f4-f5)/sl),f4*z-sl*z**2/2-f5*max((f4-f5)/sl-x,0))} E_Edg d ox VALUE {V(d,g)-(min(V(d,g),-bb)+1/(g1*(1-nc))*((1/(1+g1*max(V(d,g)+bb,0)))**(nc-1)-1))} C_Cdg ox g {Cox} E_Edg1 d ox1 VALUE {V(d,g)-QCdg(V(d,g),limit(V(d,g),(f4-f5)/sl,f4/sl))/f5} C_Cdg1 ox1 g {Cox1} C_Cdg2 d g {Crand} E_Eds d edep VALUE {(V(d2,s)-I(V_sense3)/Cds0)} C_Cds edep s {Cds0} C_Cds2 d2 s {Cds0/500} C_Cgs g s {Cgs0} G_chan d s VALUE={Iges(V(d,s),V(g,s),T0+limit(V(Tj),-200,350))} E_RMos d1 d VALUE={I(V_sense)*(Rf*dRd+(1-Rf)*dRd*((limit(V(Tj),-200,999)+T0)/Tref)**nmu)*(1+rpa*(I(V_sense)/a)**2)} V_sense dd d1 0 G_diode s d2 VALUE={Idiod(V(s,d2),T0+limit(V(Tj),-200,499))} R_Rdio d2 d3 {dRdi} V_sense2 d1 d3 0 L_L001 a c {td/(ta+td)} R_R001 a b {1/ta} V_sense3 c f 0 R_sense3 f 0 1 E_E001 b 0 VALUE {I(V_sense2)} E_E002 e 0 VALUE {1Meg*Cds0*(1/(1-nd)*U0**nd*(limit(U0+V(d2,s),U0/2,2*UBr))**(1-nd)+2**nd*min(V(d2,s)+U0/2,0))} R_R002 e c 1Meg R1 g s 1G Rd01 d s 500Meg Rd02 d2 s 500Meg Rd03 d1 d 10k G_TH 0 Tj VALUE = {heat*LIMIT(I(V_sense)*V(dd,s),0,100k)} .ENDS *$ ************************************************************************************** .SUBCKT K_240_b_var dd g s Tj PARAMS: a=1 dVth=0 dR=0 dgfs=0 Inn=1 Unn=1 Rmax=1 +gmin=1 Rs=1 Rp=1 dC=0 heat=1 .PARAM Vth0=1.5 beta4c=0.243 ph0=25.7 ph1=0.038 Ubr=290 .PARAM Rd=1.95 nmu=2.6 Rf=0.2 rpa=0.06877 lnIsj=-24.7 .PARAM Rdi=0.2 .PARAM Tref=298 T0=273 auth=3m c=0.82 mu_bet=0.4 .PARAM f_bet=-2 ndi=1.2 UTnbr=207m lnBr=-23 kbq=85.8u .PARAM Wcml={beta4c*4*c} .PARAM aubr={0.93m*UBr} .PARAM dvgs={0.1-0.06*Vth0} .PARAM f1=65p f2=69p f3=139p f4=310p f5=270p .PARAM U0=0.5 nd=0.47 nc=0.5 g1=1.9 bb=-3.3 .PARAM sl=65p remp=0p ta=60n td=20n .PARAM Vmin=0.8 Vmax=1.8 dCmax=0.35 .PARAM Vth={Vth0+(Vmax-Vth0)*limit(dVth,0,1)-(Vmin-Vth0)*limit(dVth,-1,0)} .PARAM p0={Wcml*a*((1-f_bet)*(T0/Tref)**mu_bet+f_bet) } .PARAM Rlim={(Rmax-Rs-(Unn-Vth0-Inn*Rs-SQRT((Unn-Vth0-Inn*Rs)**2-4*c*Inn/p0))/(2*c*Inn))/(1+rpa*(Inn/a)**2)} .PARAM dRd={Rd/a+if(dVth==0,limit(dR,0,1)*max(Rlim-Rd/a,0),0)} .PARAM bet={Wcml} .PARAM dC1={1+dCmax*limit(dC,0,1)} .PARAM Cox={f1*a*dC1} .PARAM Cds0={f2*a*dC1} .PARAM Cgs0={f3*a*dC1} .PARAM Cox1={f5*a*dC1} .PARAM Crand={remp*SQRT(a)} .PARAM dRdi={Rdi/a} .FUNC U1(Uds,T) {(SQRT(1+4*(0.4+(T-T0-25)*2m)*abs(Uds))-1)/2/(0.4+(T-T0-25)*2m)} .FUNC I2(p,Uee,z1,pp) {if(Uee>pp,(Uee-c*z1)*z1,p*(pp-p)/c*exp((Uee-pp-(min(0,Uee))**2)/p))} .FUNC Ig(Uds,T,p,Uee) {bet*((1-f_bet)*(T0/T)**mu_bet+f_bet)*I2(p,Uee,min(Uds,Uee/(2*c)),min(2*p,p+c*Uds))} .FUNC Iges(Uds,Ugs,T) +{a*(sgn(Uds)*Ig(U1(Uds,T),T,1/(ph0-ph1*T),Ugs-Vth+auth*(T-Tref))+exp(min(lnBr+(abs(Uds)-UBr-aubr*(T-Tref))/UTnbr,25)))} .FUNC Isjt(Tj) {exp(min(lnIsj+(Tj/Tref-1)*1.12/(ndi*kbq*Tj),9))*(Tj/Tref)**1.5} .FUNC Idiode(Usd,Tj,Iss) {exp(min(log(Iss)+Usd/(ndi*kbq*Tj),9))-Iss} .FUNC Idiod(Usd,Tj) {a*Idiode(Usd,Tj,Isjt(Tj))} .FUNC QCdg(x,z) {if(f4>f5,(f5**2-(f4-z*sl)**2)/(2*sl)+f5*min(x,(f4-f5)/sl),f4*z-sl*z**2/2-f5*max((f4-f5)/sl-x,0))} E_Edg d ox VALUE {V(d,g)-(min(V(d,g),-bb)+1/(g1*(1-nc))*((1/(1+g1*max(V(d,g)+bb,0)))**(nc-1)-1))} C_Cdg ox g {Cox} E_Edg1 d ox1 VALUE {V(d,g)-QCdg(V(d,g),limit(V(d,g),(f4-f5)/sl,f4/sl))/f5} C_Cdg1 ox1 g {Cox1} C_Cdg2 d g {Crand} E_Eds d edep VALUE {(V(d2,s)-I(V_sense3)/Cds0)} C_Cds edep s {Cds0} C_Cds2 d2 s {Cds0/500} C_Cgs g s {Cgs0} G_chan d s VALUE={Iges(V(d,s),V(g,s),T0+limit(V(Tj),-200,350))} E_RMos d1 d VALUE={I(V_sense)*(Rf*dRd+(1-Rf)*dRd*((limit(V(Tj),-200,999)+T0)/Tref)**nmu)*(1+rpa*(I(V_sense)/a)**2)} V_sense dd d1 0 G_diode s d2 VALUE={Idiod(V(s,d2),T0+limit(V(Tj),-200,499))} R_Rdio d2 d3 {dRdi} V_sense2 d1 d3 0 L_L001 a c {td/(ta+td)} R_R001 a b {1/ta} V_sense3 c f 0 R_sense3 f 0 1 E_E001 b 0 VALUE {I(V_sense2)} E_E002 e 0 VALUE {1Meg*Cds0*(1/(1-nd)*U0**nd*(limit(U0+V(d2,s),U0/2,2*UBr))**(1-nd)+2**nd*min(V(d2,s)+U0/2,0))} R_R002 e c 1Meg R1 g s 1G Rd01 d s 500Meg Rd02 d2 s 500Meg Rd03 d1 d 10k G_TH 0 Tj VALUE = {heat*LIMIT(I(V_sense)*V(dd,s),0,100k)} .ENDS *$ ************************************************************************************** .SUBCKT K_240_c_var dd g s Tj PARAMS: a=1 dVth=0 dR=0 dgfs=0 Inn=1 Unn=1 Rmax=1 +gmin=1 Rs=1 Rp=1 dC=0 heat=1 .PARAM Vth0=1.1 beta4c=0.243 ph0=25.7 ph1=0.038 Ubr=290 .PARAM Rd=1.95 nmu=2.6 Rf=0.2 rpa=0.06877 lnIsj=-24.7 .PARAM Rdi=0.2 .PARAM Tref=298 T0=273 auth=3m c=0.82 mu_bet=0.4 .PARAM f_bet=-2 ndi=1.2 UTnbr=207m lnBr=-23 kbq=85.8u .PARAM Wcml={beta4c*4*c} .PARAM aubr={0.93m*UBr} .PARAM dvgs={0.1-0.06*Vth0} .PARAM f1=65p f2=69p f3=139p f4=310p f5=270p .PARAM U0=0.5 nd=0.47 nc=0.5 g1=1.9 bb=-3.3 .PARAM sl=65p remp=0p ta=60n td=20n .PARAM Vmin=0.6 Vmax=1.4 dCmax=0.35 .PARAM Vth={Vth0+(Vmax-Vth0)*limit(dVth,0,1)-(Vmin-Vth0)*limit(dVth,-1,0)} .PARAM p0={Wcml*a*((1-f_bet)*(T0/Tref)**mu_bet+f_bet) } .PARAM Rlim={(Rmax-Rs-(Unn-Vth0-Inn*Rs-SQRT((Unn-Vth0-Inn*Rs)**2-4*c*Inn/p0))/(2*c*Inn))/(1+rpa*(Inn/a)**2)} .PARAM dRd={Rd/a+if(dVth==0,limit(dR,0,1)*max(Rlim-Rd/a,0),0)} .PARAM bet={Wcml} .PARAM dC1={1+dCmax*limit(dC,0,1)} .PARAM Cox={f1*a*dC1} .PARAM Cds0={f2*a*dC1} .PARAM Cgs0={f3*a*dC1} .PARAM Cox1={f5*a*dC1} .PARAM Crand={remp*SQRT(a)} .PARAM dRdi={Rdi/a} .FUNC U1(Uds,T) {(SQRT(1+4*(0.4+(T-T0-25)*2m)*abs(Uds))-1)/2/(0.4+(T-T0-25)*2m)} .FUNC I2(p,Uee,z1,pp) {if(Uee>pp,(Uee-c*z1)*z1,p*(pp-p)/c*exp((Uee-pp-(min(0,Uee))**2)/p))} .FUNC Ig(Uds,T,p,Uee) {bet*((1-f_bet)*(T0/T)**mu_bet+f_bet)*I2(p,Uee,min(Uds,Uee/(2*c)),min(2*p,p+c*Uds))} .FUNC Iges(Uds,Ugs,T) +{a*(sgn(Uds)*Ig(U1(Uds,T),T,1/(ph0-ph1*T),Ugs-Vth+auth*(T-Tref))+exp(min(lnBr+(abs(Uds)-UBr-aubr*(T-Tref))/UTnbr,25)))} .FUNC Isjt(Tj) {exp(min(lnIsj+(Tj/Tref-1)*1.12/(ndi*kbq*Tj),9))*(Tj/Tref)**1.5} .FUNC Idiode(Usd,Tj,Iss) {exp(min(log(Iss)+Usd/(ndi*kbq*Tj),9))-Iss} .FUNC Idiod(Usd,Tj) {a*Idiode(Usd,Tj,Isjt(Tj))} .FUNC QCdg(x,z) {if(f4>f5,(f5**2-(f4-z*sl)**2)/(2*sl)+f5*min(x,(f4-f5)/sl),f4*z-sl*z**2/2-f5*max((f4-f5)/sl-x,0))} E_Edg d ox VALUE {V(d,g)-(min(V(d,g),-bb)+1/(g1*(1-nc))*((1/(1+g1*max(V(d,g)+bb,0)))**(nc-1)-1))} C_Cdg ox g {Cox} E_Edg1 d ox1 VALUE {V(d,g)-QCdg(V(d,g),limit(V(d,g),(f4-f5)/sl,f4/sl))/f5} C_Cdg1 ox1 g {Cox1} C_Cdg2 d g {Crand} E_Eds d edep VALUE {(V(d2,s)-I(V_sense3)/Cds0)} C_Cds edep s {Cds0} C_Cds2 d2 s {Cds0/500} C_Cgs g s {Cgs0} G_chan d s VALUE={Iges(V(d,s),V(g,s),T0+limit(V(Tj),-200,350))} E_RMos d1 d VALUE={I(V_sense)*(Rf*dRd+(1-Rf)*dRd*((limit(V(Tj),-200,999)+T0)/Tref)**nmu)*(1+rpa*(I(V_sense)/a)**2)} V_sense dd d1 0 G_diode s d2 VALUE={Idiod(V(s,d2),T0+limit(V(Tj),-200,499))} R_Rdio d2 d3 {dRdi} V_sense2 d1 d3 0 L_L001 a c {td/(ta+td)} R_R001 a b {1/ta} V_sense3 c f 0 R_sense3 f 0 1 E_E001 b 0 VALUE {I(V_sense2)} E_E002 e 0 VALUE {1Meg*Cds0*(1/(1-nd)*U0**nd*(limit(U0+V(d2,s),U0/2,2*UBr))**(1-nd)+2**nd*min(V(d2,s)+U0/2,0))} R_R002 e c 1Meg R1 g s 1G Rd01 d s 500Meg Rd02 d2 s 500Meg Rd03 d1 d 10k G_TH 0 Tj VALUE = {heat*LIMIT(I(V_sense)*V(dd,s),0,100k)} .ENDS *$ ************************************************************************************** .SUBCKT K_240_d_var dd g s Tj PARAMS: a=1 dVth=0 dR=0 dgfs=0 Inn=1 Unn=1 Rmax=1 +gmin=1 Rs=1 Rp=1 dC=0 heat=1 .PARAM Vth0=-1.05 beta4c=0.243 ph0=20 ph1=0.026 Ubr=290 .PARAM Rd=1.95 nmu=2.6 Rf=0.2 rpa=0.06877 lnIsj=-24.7 .PARAM Rdi=0.2 .PARAM Tref=298 T0=273 auth=3m c=0.82 mu_bet=0.4 .PARAM f_bet=-2 ndi=1.2 UTnbr=207m lnBr=-23 kbq=85.8u .PARAM Wcml={beta4c*4*c} .PARAM aubr={0.93m*UBr} .PARAM dvgs={0.1-0.06*Vth0} .PARAM f1=65p f2=69p f3=139p f4=360p f5=270p .PARAM U0=0.5 nd=0.47 nc=0.5 g1=1.9 bb=-7 .PARAM sl=45p remp=0p ta=60n td=20n .PARAM Vmin=-1.75 Vmax=-0.65 dCmax=0.35 .PARAM Vth={Vth0+(Vmax-Vth0)*limit(dVth,0,1)-(Vmin-Vth0)*limit(dVth,-1,0)} .PARAM p0={Wcml*a*((1-f_bet)*(T0/Tref)**mu_bet+f_bet) } .PARAM Rlim={(Rmax-Rs-(Unn-Vth0-Inn*Rs-SQRT((Unn-Vth0-Inn*Rs)**2-4*c*Inn/p0))/(2*c*Inn))/(1+rpa*(Inn/a)**2)} .PARAM dRd={Rd/a+if(dVth==0,limit(dR,0,1)*max(Rlim-Rd/a,0),0)} .PARAM bet={Wcml} .PARAM dC1={1+dCmax*limit(dC,0,1)} .PARAM Cox={f1*a*dC1} .PARAM Cds0={f2*a*dC1} .PARAM Cgs0={f3*a*dC1} .PARAM Cox1={f5*a*dC1} .PARAM Crand={remp*SQRT(a)} .PARAM dRdi={Rdi/a} .FUNC U1(Uds,T) {(SQRT(1+4*(0.4+(T-T0-25)*2m)*abs(Uds))-1)/2/(0.4+(T-T0-25)*2m)} .FUNC I2(p,Uee,z1,pp) {if(Uee>pp,(Uee-c*z1)*z1,p*(pp-p)/c*exp((Uee-pp-(min(0,Uee))**2)/p))} .FUNC Ig(Uds,T,p,Uee) {bet*((1-f_bet)*(T0/T)**mu_bet+f_bet)*I2(p,Uee,min(Uds,Uee/(2*c)),min(2*p,p+c*Uds))} .FUNC Iges(Uds,Ugs,T) +{a*(sgn(Uds)*Ig(U1(Uds,T),T,1/(ph0-ph1*T),Ugs-Vth+auth*(T-Tref))+exp(min(lnBr+(abs(Uds)-UBr-aubr*(T-Tref))/UTnbr,25)))} .FUNC Isjt(Tj) {exp(min(lnIsj+(Tj/Tref-1)*1.12/(ndi*kbq*Tj),9))*(Tj/Tref)**1.5} .FUNC Idiode(Usd,Tj,Iss) {exp(min(log(Iss)+Usd/(ndi*kbq*Tj),9))-Iss} .FUNC Idiod(Usd,Tj) {a*Idiode(Usd,Tj,Isjt(Tj))} .FUNC QCdg(x,z) {if(f4>f5,(f5**2-(f4-z*sl)**2)/(2*sl)+f5*min(x,(f4-f5)/sl),f4*z-sl*z**2/2-f5*max((f4-f5)/sl-x,0))} E_Edg d ox VALUE {V(d,g)-(min(V(d,g),-bb)+1/(g1*(1-nc))*((1/(1+g1*max(V(d,g)+bb,0)))**(nc-1)-1))} C_Cdg ox g {Cox} E_Edg1 d ox1 VALUE {V(d,g)-QCdg(V(d,g),limit(V(d,g),(f4-f5)/sl,f4/sl))/f5} C_Cdg1 ox1 g {Cox1} C_Cdg2 d g {Crand} E_Eds d edep VALUE {(V(d2,s)-I(V_sense3)/Cds0)} C_Cds edep s {Cds0} C_Cds2 d2 s {Cds0/500} C_Cgs g s {Cgs0} G_chan d s VALUE={Iges(V(d,s),V(g,s),T0+limit(V(Tj),-200,350))} E_RMos d1 d VALUE={I(V_sense)*(Rf*dRd+(1-Rf)*dRd*((limit(V(Tj),-200,999)+T0)/Tref)**nmu)*(1+rpa*(I(V_sense)/a)**2)} V_sense dd d1 0 G_diode s d2 VALUE={Idiod(V(s,d2),T0+limit(V(Tj),-200,499))} R_Rdio d2 d3 {dRdi} V_sense2 d1 d3 0 L_L001 a c {td/(ta+td)} R_R001 a b {1/ta} V_sense3 c f 0 R_sense3 f 0 1 E_E001 b 0 VALUE {I(V_sense2)} E_E002 e 0 VALUE {1Meg*Cds0*(1/(1-nd)*U0**nd*(limit(U0+V(d2,s),U0/2,2*UBr))**(1-nd)+2**nd*min(V(d2,s)+U0/2,0))} R_R002 e c 1Meg R1 g s 1G Rd01 d s 500Meg Rd02 d2 s 500Meg Rd03 d1 d 10k G_TH 0 Tj VALUE = {heat*LIMIT(I(V_sense)*V(dd,s),0,100k)} .ENDS *$ ************************************************************************************** .SUBCKT K_250_d_var dd g s Tj PARAMS: a=1 dVth=0 dR=0 dgfs=0 Inn=1 Unn=1 Rmax=1 +gmin=1 Rs=1 Rp=1 dC=0 heat=1 .PARAM Vth0=-1.1 beta4c=0.217 ph0=20 ph1=0.026 Ubr=295 .PARAM Rd=2 nmu=2.6 Rf=0.15 rpa=0.10933 lnIsj=-24.7 .PARAM Rdi=0.2 .PARAM Tref=298 T0=273 auth=3m c=0.82 mu_bet=0.4 .PARAM f_bet=-2 ndi=1.2 UTnbr=207m lnBr=-23 kbq=85.8u .PARAM Wcml={beta4c*4*c} .PARAM aubr={0.93m*UBr} .PARAM dvgs={0.1-0.06*Vth0} .PARAM f1=65p f2=85p f3=198p f4=305p f5=314p .PARAM U0=0.5 nd=0.45 nc=0.5 g1=2.2 bb=-7.5 .PARAM sl=31p remp=0p ta=60n td=20n .PARAM Vmin=-2.1 Vmax=-1 dCmax=0.35 .PARAM Vth={Vth0+(Vmax-Vth0)*limit(dVth,0,1)-(Vmin-Vth0)*limit(dVth,-1,0)} .PARAM p0={Wcml*a*((1-f_bet)*(T0/Tref)**mu_bet+f_bet) } .PARAM Rlim={(Rmax-Rs-(Unn-Vth0-Inn*Rs-SQRT((Unn-Vth0-Inn*Rs)**2-4*c*Inn/p0))/(2*c*Inn))/(1+rpa*(Inn/a)**2)} .PARAM dRd={Rd/a+if(dVth==0,limit(dR,0,1)*max(Rlim-Rd/a,0),0)} .PARAM bet={Wcml} .PARAM dC1={1+dCmax*limit(dC,0,1)} .PARAM Cox={f1*a*dC1} .PARAM Cds0={f2*a*dC1} .PARAM Cgs0={f3*a*dC1} .PARAM Cox1={f5*a*dC1} .PARAM Crand={remp*SQRT(a)} .PARAM dRdi={Rdi/a} .FUNC U1(Uds,T) {(SQRT(1+4*(0.4+(T-T0-25)*2m)*abs(Uds))-1)/2/(0.4+(T-T0-25)*2m)} .FUNC I2(p,Uee,z1,pp) {if(Uee>pp,(Uee-c*z1)*z1,p*(pp-p)/c*exp((Uee-pp-(min(0,Uee))**2)/p))} .FUNC Ig(Uds,T,p,Uee) {bet*((1-f_bet)*(T0/T)**mu_bet+f_bet)*I2(p,Uee,min(Uds,Uee/(2*c)),min(2*p,p+c*Uds))} .FUNC Iges(Uds,Ugs,T) +{a*(sgn(Uds)*Ig(U1(Uds,T),T,1/(ph0-ph1*T),Ugs-Vth+auth*(T-Tref))+exp(min(lnBr+(abs(Uds)-UBr-aubr*(T-Tref))/UTnbr,25)))} .FUNC Isjt(Tj) {exp(min(lnIsj+(Tj/Tref-1)*1.12/(ndi*kbq*Tj),9))*(Tj/Tref)**1.5} .FUNC Idiode(Usd,Tj,Iss) {exp(min(log(Iss)+Usd/(ndi*kbq*Tj),9))-Iss} .FUNC Idiod(Usd,Tj) {a*Idiode(Usd,Tj,Isjt(Tj))} .FUNC QCdg(x,z) {if(f4>f5,(f5**2-(f4-z*sl)**2)/(2*sl)+f5*min(x,(f4-f5)/sl),f4*z-sl*z**2/2-f5*max((f4-f5)/sl-x,0))} E_Edg d ox VALUE {V(d,g)-(min(V(d,g),-bb)+1/(g1*(1-nc))*((1/(1+g1*max(V(d,g)+bb,0)))**(nc-1)-1))} C_Cdg ox g {Cox} E_Edg1 d ox1 VALUE {V(d,g)-QCdg(V(d,g),limit(V(d,g),(f4-f5)/sl,f4/sl))/f5} C_Cdg1 ox1 g {Cox1} C_Cdg2 d g {Crand} E_Eds d edep VALUE {(V(d2,s)-I(V_sense3)/Cds0)} C_Cds edep s {Cds0} C_Cds2 d2 s {Cds0/500} C_Cgs g s {Cgs0} G_chan d s VALUE={Iges(V(d,s),V(g,s),T0+limit(V(Tj),-200,350))} E_RMos d1 d VALUE={I(V_sense)*(Rf*dRd+(1-Rf)*dRd*((limit(V(Tj),-200,999)+T0)/Tref)**nmu)*(1+rpa*(I(V_sense)/a)**2)} V_sense dd d1 0 G_diode s d2 VALUE={Idiod(V(s,d2),T0+limit(V(Tj),-200,499))} R_Rdio d2 d3 {dRdi} V_sense2 d1 d3 0 L_L001 a c {td/(ta+td)} R_R001 a b {1/ta} V_sense3 c f 0 R_sense3 f 0 1 E_E001 b 0 VALUE {I(V_sense2)} E_E002 e 0 VALUE {1Meg*Cds0*(1/(1-nd)*U0**nd*(limit(U0+V(d2,s),U0/2,2*UBr))**(1-nd)+2**nd*min(V(d2,s)+U0/2,0))} R_R002 e c 1Meg R1 g s 1G Rd01 d s 500Meg Rd02 d2 s 500Meg Rd03 d1 d 10k G_TH 0 Tj VALUE = {heat*LIMIT(I(V_sense)*V(dd,s),0,100k)} .ENDS *$ ************************************************************************************** .SUBCKT K_400_a_var dd g s Tj PARAMS: a=1 dVth=0 dR=0 dgfs=0 Inn=1 Unn=1 Rmax=1 +gmin=1 Rs=1 Rp=1 dC=0 heat=1 .PARAM Vth0=2.07 beta4c=0.157 ph0=25.7 ph1=0.038 Ubr=495 .PARAM Rd=5.75 nmu=2.65 Rf=0.12 rpa=0.28717 lnIsj=-24.7 .PARAM Rdi=0.2 .PARAM Tref=298 T0=273 auth=3m c=0.82 mu_bet=0.4 .PARAM f_bet=-2 ndi=1.2 UTnbr=207m lnBr=-23 kbq=85.8u .PARAM Wcml={beta4c*4*c} .PARAM aubr={0.93m*UBr} .PARAM dvgs={0.1-0.06*Vth0} .PARAM f1=80p f2=54p f3=204p f4=320p f5=390p .PARAM U0=0.5 nd=0.42 nc=0.5 g1=4 bb=-1.5 .PARAM sl=150p remp=0p ta=60n td=20n .PARAM Vmin=1.3 Vmax=2.3 dCmax=0.35 .PARAM Vth={Vth0+(Vmax-Vth0)*limit(dVth,0,1)-(Vmin-Vth0)*limit(dVth,-1,0)} .PARAM p0={Wcml*a*((1-f_bet)*(T0/Tref)**mu_bet+f_bet) } .PARAM Rlim={(Rmax-Rs-(Unn-Vth0-Inn*Rs-SQRT((Unn-Vth0-Inn*Rs)**2-4*c*Inn/p0))/(2*c*Inn))/(1+rpa*(Inn/a)**2)} .PARAM dRd={Rd/a+if(dVth==0,limit(dR,0,1)*max(Rlim-Rd/a,0),0)} .PARAM bet={Wcml} .PARAM dC1={1+dCmax*limit(dC,0,1)} .PARAM Cox={f1*a*dC1} .PARAM Cds0={f2*a*dC1} .PARAM Cgs0={f3*a*dC1} .PARAM Cox1={f5*a*dC1} .PARAM Crand={remp*SQRT(a)} .PARAM dRdi={Rdi/a} .FUNC U1(Uds,T) {(SQRT(1+4*(0.4+(T-T0-25)*2m)*abs(Uds))-1)/2/(0.4+(T-T0-25)*2m)} .FUNC I2(p,Uee,z1,pp) {if(Uee>pp,(Uee-c*z1)*z1,p*(pp-p)/c*exp((Uee-pp-(min(0,Uee))**2)/p))} .FUNC Ig(Uds,T,p,Uee) {bet*((1-f_bet)*(T0/T)**mu_bet+f_bet)*I2(p,Uee,min(Uds,Uee/(2*c)),min(2*p,p+c*Uds))} .FUNC Iges(Uds,Ugs,T) +{a*(sgn(Uds)*Ig(U1(Uds,T),T,1/(ph0-ph1*T),Ugs-Vth+auth*(T-Tref))+exp(min(lnBr+(abs(Uds)-UBr-aubr*(T-Tref))/UTnbr,25)))} .FUNC Isjt(Tj) {exp(min(lnIsj+(Tj/Tref-1)*1.12/(ndi*kbq*Tj),9))*(Tj/Tref)**1.5} .FUNC Idiode(Usd,Tj,Iss) {exp(min(log(Iss)+Usd/(ndi*kbq*Tj),9))-Iss} .FUNC Idiod(Usd,Tj) {a*Idiode(Usd,Tj,Isjt(Tj))} .FUNC QCdg(x,z) {if(f4>f5,(f5**2-(f4-z*sl)**2)/(2*sl)+f5*min(x,(f4-f5)/sl),f4*z-sl*z**2/2-f5*max((f4-f5)/sl-x,0))} E_Edg d ox VALUE {V(d,g)-(min(V(d,g),-bb)+1/(g1*(1-nc))*((1/(1+g1*max(V(d,g)+bb,0)))**(nc-1)-1))} C_Cdg ox g {Cox} E_Edg1 d ox1 VALUE {V(d,g)-QCdg(V(d,g),limit(V(d,g),(f4-f5)/sl,f4/sl))/f5} C_Cdg1 ox1 g {Cox1} C_Cdg2 d g {Crand} E_Eds d edep VALUE {(V(d2,s)-I(V_sense3)/Cds0)} C_Cds edep s {Cds0} C_Cds2 d2 s {Cds0/500} C_Cgs g s {Cgs0} G_chan d s VALUE={Iges(V(d,s),V(g,s),T0+limit(V(Tj),-200,350))} E_RMos d1 d VALUE={I(V_sense)*(Rf*dRd+(1-Rf)*dRd*((limit(V(Tj),-200,999)+T0)/Tref)**nmu)*(1+rpa*(I(V_sense)/a)**2)} V_sense dd d1 0 G_diode s d2 VALUE={Idiod(V(s,d2),T0+limit(V(Tj),-200,499))} R_Rdio d2 d3 {dRdi} V_sense2 d1 d3 0 L_L001 a c {td/(ta+td)} R_R001 a b {1/ta} V_sense3 c f 0 R_sense3 f 0 1 E_E001 b 0 VALUE {I(V_sense2)} E_E002 e 0 VALUE {1Meg*Cds0*(1/(1-nd)*U0**nd*(limit(U0+V(d2,s),U0/2,2*UBr))**(1-nd)+2**nd*min(V(d2,s)+U0/2,0))} R_R002 e c 1Meg R1 g s 1G Rd01 d s 500Meg Rd02 d2 s 500Meg Rd03 d1 d 10k G_TH 0 Tj VALUE = {heat*LIMIT(I(V_sense)*V(dd,s),0,100k)} .ENDS *$ ************************************************************************************** .SUBCKT K_600_a_var dd g s Tj PARAMS: a=1 dVth=0 dR=0 dgfs=0 Inn=1 Unn=1 Rmax=1 +gmin=1 Rs=1 Rp=1 dC=0 heat=1 .PARAM Vth0=2.07 beta4c=0.157 ph0=25.7 ph1=0.038 Ubr=650 .PARAM Rd=11 nmu=2.7 Rf=0.1 rpa=0.58357 lnIsj=-24.7 .PARAM Rdi=0.2 .PARAM Tref=298 T0=273 auth=3m c=0.82 mu_bet=0.4 .PARAM f_bet=-2 ndi=1.2 UTnbr=207m lnBr=-23 kbq=85.8u .PARAM Wcml={beta4c*4*c} .PARAM aubr={0.93m*UBr} .PARAM dvgs={0.1-0.06*Vth0} .PARAM f1=80p f2=60p f3=204p f4=320p f5=390p .PARAM U0=0.5 nd=0.42 nc=0.5 g1=7 bb=-1.5 .PARAM sl=150p remp=0p ta=60n td=20n .PARAM Vmin=1.3 Vmax=2.3 dCmax=0.35 .PARAM Vth={Vth0+(Vmax-Vth0)*limit(dVth,0,1)-(Vmin-Vth0)*limit(dVth,-1,0)} .PARAM p0={Wcml*a*((1-f_bet)*(T0/Tref)**mu_bet+f_bet) } .PARAM Rlim={(Rmax-Rs-(Unn-Vth0-Inn*Rs-SQRT((Unn-Vth0-Inn*Rs)**2-4*c*Inn/p0))/(2*c*Inn))/(1+rpa*(Inn/a)**2)} .PARAM dRd={Rd/a+if(dVth==0,limit(dR,0,1)*max(Rlim-Rd/a,0),0)} .PARAM bet={Wcml} .PARAM dC1={1+dCmax*limit(dC,0,1)} .PARAM Cox={f1*a*dC1} .PARAM Cds0={f2*a*dC1} .PARAM Cgs0={f3*a*dC1} .PARAM Cox1={f5*a*dC1} .PARAM Crand={remp*SQRT(a)} .PARAM dRdi={Rdi/a} .FUNC U1(Uds,T) {(SQRT(1+4*(0.4+(T-T0-25)*2m)*abs(Uds))-1)/2/(0.4+(T-T0-25)*2m)} .FUNC I2(p,Uee,z1,pp) {if(Uee>pp,(Uee-c*z1)*z1,p*(pp-p)/c*exp((Uee-pp-(min(0,Uee))**2)/p))} .FUNC Ig(Uds,T,p,Uee) {bet*((1-f_bet)*(T0/T)**mu_bet+f_bet)*I2(p,Uee,min(Uds,Uee/(2*c)),min(2*p,p+c*Uds))} .FUNC Iges(Uds,Ugs,T) +{a*(sgn(Uds)*Ig(U1(Uds,T),T,1/(ph0-ph1*T),Ugs-Vth+auth*(T-Tref))+exp(min(lnBr+(abs(Uds)-UBr-aubr*(T-Tref))/UTnbr,25)))} .FUNC Isjt(Tj) {exp(min(lnIsj+(Tj/Tref-1)*1.12/(ndi*kbq*Tj),9))*(Tj/Tref)**1.5} .FUNC Idiode(Usd,Tj,Iss) {exp(min(log(Iss)+Usd/(ndi*kbq*Tj),9))-Iss} .FUNC Idiod(Usd,Tj) {a*Idiode(Usd,Tj,Isjt(Tj))} .FUNC QCdg(x,z) {if(f4>f5,(f5**2-(f4-z*sl)**2)/(2*sl)+f5*min(x,(f4-f5)/sl),f4*z-sl*z**2/2-f5*max((f4-f5)/sl-x,0))} E_Edg d ox VALUE {V(d,g)-(min(V(d,g),-bb)+1/(g1*(1-nc))*((1/(1+g1*max(V(d,g)+bb,0)))**(nc-1)-1))} C_Cdg ox g {Cox} E_Edg1 d ox1 VALUE {V(d,g)-QCdg(V(d,g),limit(V(d,g),(f4-f5)/sl,f4/sl))/f5} C_Cdg1 ox1 g {Cox1} C_Cdg2 d g {Crand} E_Eds d edep VALUE {(V(d2,s)-I(V_sense3)/Cds0)} C_Cds edep s {Cds0} C_Cds2 d2 s {Cds0/500} C_Cgs g s {Cgs0} G_chan d s VALUE={Iges(V(d,s),V(g,s),T0+limit(V(Tj),-200,350))} E_RMos d1 d VALUE={I(V_sense)*(Rf*dRd+(1-Rf)*dRd*((limit(V(Tj),-200,999)+T0)/Tref)**nmu)*(1+rpa*(I(V_sense)/a)**2)} V_sense dd d1 0 G_diode s d2 VALUE={Idiod(V(s,d2),T0+limit(V(Tj),-200,499))} R_Rdio d2 d3 {dRdi} V_sense2 d1 d3 0 L_L001 a c {td/(ta+td)} R_R001 a b {1/ta} V_sense3 c f 0 R_sense3 f 0 1 E_E001 b 0 VALUE {I(V_sense2)} E_E002 e 0 VALUE {1Meg*Cds0*(1/(1-nd)*U0**nd*(limit(U0+V(d2,s),U0/2,2*UBr))**(1-nd)+2**nd*min(V(d2,s)+U0/2,0))} R_R002 e c 1Meg R1 g s 1G Rd01 d s 500Meg Rd02 d2 s 500Meg Rd03 d1 d 20k G_TH 0 Tj VALUE = {heat*LIMIT(I(V_sense)*V(dd,s),0,100k)} .ENDS *$ ************************************************************************************** .SUBCKT K_600_d_var dd g s Tj PARAMS: a=1 dVth=0 dR=0 dgfs=0 Inn=1 Unn=1 Rmax=1 +gmin=1 Rs=1 Rp=1 dC=0 heat=1 .PARAM Vth0=-1.15 beta4c=0.157 ph0=20 ph1=0.026 Ubr=650 .PARAM Rd=11 nmu=2.7 Rf=0.1 rpa=0.58357 lnIsj=-24.7 .PARAM Rdi=0.2 .PARAM Tref=298 T0=273 auth=3m c=0.82 mu_bet=0.4 .PARAM f_bet=-2 ndi=1.2 UTnbr=207m lnBr=-23 kbq=85.8u .PARAM Wcml={beta4c*4*c} .PARAM aubr={0.93m*UBr} .PARAM dvgs={0.1-0.06*Vth0} .PARAM f1=100p f2=60p f3=204p f4=435p f5=355p .PARAM U0=0.5 nd=0.43 nc=0.5 g1=9 bb=-9.8 .PARAM sl=37p remp=0p ta=100n td=30n .PARAM Vmin=-2.1 Vmax=-1 dCmax=0.35 .PARAM Vth={Vth0+(Vmax-Vth0)*limit(dVth,0,1)-(Vmin-Vth0)*limit(dVth,-1,0)} .PARAM p0={Wcml*a*((1-f_bet)*(T0/Tref)**mu_bet+f_bet) } .PARAM Rlim={(Rmax-Rs-(Unn-Vth0-Inn*Rs-SQRT((Unn-Vth0-Inn*Rs)**2-4*c*Inn/p0))/(2*c*Inn))/(1+rpa*(Inn/a)**2)} .PARAM dRd={Rd/a+if(dVth==0,limit(dR,0,1)*max(Rlim-Rd/a,0),0)} .PARAM bet={Wcml} .PARAM dC1={1+dCmax*limit(dC,0,1)} .PARAM Cox={f1*a*dC1} .PARAM Cds0={f2*a*dC1} .PARAM Cgs0={f3*a*dC1} .PARAM Cox1={f5*a*dC1} .PARAM Crand={remp*SQRT(a)} .PARAM dRdi={Rdi/a} .FUNC U1(Uds,T) {(SQRT(1+4*(0.4+(T-T0-25)*2m)*abs(Uds))-1)/2/(0.4+(T-T0-25)*2m)} .FUNC I2(p,Uee,z1,pp) {if(Uee>pp,(Uee-c*z1)*z1,p*(pp-p)/c*exp((Uee-pp-(min(0,Uee))**2)/p))} .FUNC Ig(Uds,T,p,Uee) {bet*((1-f_bet)*(T0/T)**mu_bet+f_bet)*I2(p,Uee,min(Uds,Uee/(2*c)),min(2*p,p+c*Uds))} .FUNC Iges(Uds,Ugs,T) +{a*(sgn(Uds)*Ig(U1(Uds,T),T,1/(ph0-ph1*T),Ugs-Vth+auth*(T-Tref))+exp(min(lnBr+(abs(Uds)-UBr-aubr*(T-Tref))/UTnbr,25)))} .FUNC Isjt(Tj) {exp(min(lnIsj+(Tj/Tref-1)*1.12/(ndi*kbq*Tj),9))*(Tj/Tref)**1.5} .FUNC Idiode(Usd,Tj,Iss) {exp(min(log(Iss)+Usd/(ndi*kbq*Tj),9))-Iss} .FUNC Idiod(Usd,Tj) {a*Idiode(Usd,Tj,Isjt(Tj))} .FUNC QCdg(x,z) {if(f4>f5,(f5**2-(f4-z*sl)**2)/(2*sl)+f5*min(x,(f4-f5)/sl),f4*z-sl*z**2/2-f5*max((f4-f5)/sl-x,0))} E_Edg d ox VALUE {V(d,g)-(min(V(d,g),-bb)+1/(g1*(1-nc))*((1/(1+g1*max(V(d,g)+bb,0)))**(nc-1)-1))} C_Cdg ox g {Cox} E_Edg1 d ox1 VALUE {V(d,g)-QCdg(V(d,g),limit(V(d,g),(f4-f5)/sl,f4/sl))/f5} C_Cdg1 ox1 g {Cox1} C_Cdg2 d g {Crand} E_Eds d edep VALUE {(V(d2,s)-I(V_sense3)/Cds0)} C_Cds edep s {Cds0} C_Cds2 d2 s {Cds0/500} C_Cgs g s {Cgs0} G_chan d s VALUE={Iges(V(d,s),V(g,s),T0+limit(V(Tj),-200,350))} E_RMos d1 d VALUE={I(V_sense)*(Rf*dRd+(1-Rf)*dRd*((limit(V(Tj),-200,999)+T0)/Tref)**nmu)*(1+rpa*(I(V_sense)/a)**2)} V_sense dd d1 0 G_diode s d2 VALUE={Idiod(V(s,d2),T0+limit(V(Tj),-200,499))} R_Rdio d2 d3 {dRdi} V_sense2 d1 d3 0 L_L001 a c {td/(ta+td)} R_R001 a b {1/ta} V_sense3 c f 0 R_sense3 f 0 1 E_E001 b 0 VALUE {I(V_sense2)} E_E002 e 0 VALUE {1Meg*Cds0*(1/(1-nd)*U0**nd*(limit(U0+V(d2,s),U0/2,2*UBr))**(1-nd)+2**nd*min(V(d2,s)+U0/2,0))} R_R002 e c 1Meg R1 g s 1G Rd01 d s 500Meg Rd02 d2 s 500Meg Rd03 d1 d 20k G_TH 0 Tj VALUE = {heat*LIMIT(I(V_sense)*V(dd,s),0,100k)} .ENDS *$ ************************************************************************************** .SUBCKT K_600_e_var dd g s Tj PARAMS: a=1 dVth=0 dR=0 dgfs=0 Inn=1 Unn=1 Rmax=1 +gmin=1 Rs=1 Rp=1 dC=0 heat=1 .PARAM Vth0=-1.75 beta4c=0.206 ph0=20 ph1=0.026 Ubr=650 .PARAM Rd=11 nmu=2.7 Rf=0.1 rpa=0.58357 lnIsj=-24.7 .PARAM Rdi=0.2 .PARAM Tref=298 T0=273 auth=3m c=0.82 mu_bet=0.4 .PARAM f_bet=-2 ndi=1.2 UTnbr=207m lnBr=-23 kbq=85.8u .PARAM Wcml={beta4c*4*c} .PARAM aubr={0.93m*UBr} .PARAM dvgs={0.1-0.06*Vth0} .PARAM f1=100p f2=100p f3=500p f4=435p f5=500p .PARAM U0=0.5 nd=0.4 nc=0.5 g1=9 bb=-9.8 .PARAM sl=37p remp=2p ta=60n td=20n .PARAM Vmin=-2.7 Vmax=-1.6 dCmax=0.35 .PARAM Vth={Vth0+(Vmax-Vth0)*limit(dVth,0,1)-(Vmin-Vth0)*limit(dVth,-1,0)} .PARAM p0={Wcml*a*((1-f_bet)*(T0/Tref)**mu_bet+f_bet) } .PARAM Rlim={(Rmax-Rs-(Unn-Vth0-Inn*Rs-SQRT((Unn-Vth0-Inn*Rs)**2-4*c*Inn/p0))/(2*c*Inn))/(1+rpa*(Inn/a)**2)} .PARAM dRd={Rd/a+if(dVth==0,limit(dR,0,1)*max(Rlim-Rd/a,0),0)} .PARAM bet={Wcml} .PARAM dC1={1+dCmax*limit(dC,0,1)} .PARAM Cox={f1*a*dC1} .PARAM Cds0={f2*a*dC1} .PARAM Cgs0={f3*a*dC1} .PARAM Cox1={f5*a*dC1} .PARAM Crand={remp*SQRT(a)} .PARAM dRdi={Rdi/a} .FUNC U1(Uds,T) {(SQRT(1+4*(0.4+(T-T0-25)*2m)*abs(Uds))-1)/2/(0.4+(T-T0-25)*2m)} .FUNC I2(p,Uee,z1,pp) {if(Uee>pp,(Uee-c*z1)*z1,p*(pp-p)/c*exp((Uee-pp-(min(0,Uee))**2)/p))} .FUNC Ig(Uds,T,p,Uee) {bet*((1-f_bet)*(T0/T)**mu_bet+f_bet)*I2(p,Uee,min(Uds,Uee/(2*c)),min(2*p,p+c*Uds))} .FUNC Iges(Uds,Ugs,T) +{a*(sgn(Uds)*Ig(U1(Uds,T),T,1/(ph0-ph1*T),Ugs-Vth+auth*(T-Tref))+exp(min(lnBr+(abs(Uds)-UBr-aubr*(T-Tref))/UTnbr,25)))} .FUNC Isjt(Tj) {exp(min(lnIsj+(Tj/Tref-1)*1.12/(ndi*kbq*Tj),9))*(Tj/Tref)**1.5} .FUNC Idiode(Usd,Tj,Iss) {exp(min(log(Iss)+Usd/(ndi*kbq*Tj),9))-Iss} .FUNC Idiod(Usd,Tj) {a*Idiode(Usd,Tj,Isjt(Tj))} .FUNC QCdg(x,z) {if(f4>f5,(f5**2-(f4-z*sl)**2)/(2*sl)+f5*min(x,(f4-f5)/sl),f4*z-sl*z**2/2-f5*max((f4-f5)/sl-x,0))} E_Edg d ox VALUE {V(d,g)-(min(V(d,g),-bb)+1/(g1*(1-nc))*((1/(1+g1*max(V(d,g)+bb,0)))**(nc-1)-1))} C_Cdg ox g {Cox} E_Edg1 d ox1 VALUE {V(d,g)-QCdg(V(d,g),limit(V(d,g),(f4-f5)/sl,f4/sl))/f5} C_Cdg1 ox1 g {Cox1} C_Cdg2 d g {Crand} E_Eds d edep VALUE {(V(d2,s)-I(V_sense3)/Cds0)} C_Cds edep s {Cds0} C_Cds2 d2 s {Cds0/500} C_Cgs g s {Cgs0} G_chan d s VALUE={Iges(V(d,s),V(g,s),T0+limit(V(Tj),-200,350))} E_RMos d1 d VALUE={I(V_sense)*(Rf*dRd+(1-Rf)*dRd*((limit(V(Tj),-200,999)+T0)/Tref)**nmu)*(1+rpa*(I(V_sense)/a)**2)} V_sense dd d1 0 G_diode s d2 VALUE={Idiod(V(s,d2),T0+limit(V(Tj),-200,499))} R_Rdio d2 d3 {dRdi} V_sense2 d1 d3 0 L_L001 a c {td/(ta+td)} R_R001 a b {1/ta} V_sense3 c f 0 R_sense3 f 0 1 E_E001 b 0 VALUE {I(V_sense2)} E_E002 e 0 VALUE {1Meg*Cds0*(1/(1-nd)*U0**nd*(limit(U0+V(d2,s),U0/2,2*UBr))**(1-nd)+2**nd*min(V(d2,s)+U0/2,0))} R_R002 e c 1Meg R1 g s 1G Rd01 d s 500Meg Rd02 d2 s 500Meg Rd03 d1 d 100k G_TH 0 Tj VALUE = {heat*LIMIT(I(V_sense)*V(dd,s),0,100k)} .ENDS *$ .SUBCKT BSS131 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 Zthtype=0 .PARAM Rs=0.074 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.1 Unn=10 Rmax=14 .PARAM act=0.28 X1 d1 g s Tj K_240_a_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=1 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} Rth1 Tj t1 {624.77m+limit(Zthtype,0,1)*231.23m} Rth2 t1 t2 {2.85+limit(Zthtype,0,1)*1.06} Rth3 t2 t3 {5.96+limit(Zthtype,0,1)*781.17m} Rth4 t3 t4 {68.15+limit(Zthtype,0,1)*58.03} Rth5 t4 Tcase {79.56+limit(Zthtype,0,1)*67.75} Cth1 Tj 0 10.376u Cth2 t1 0 17.965u Cth3 t2 0 180.456u Cth4 t3 0 374.154u Cth5 t4 0 4.696m .ENDS *$ ******************** .SUBCKT BSS87 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 Zthtype=0 .PARAM Rs=0.082 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.26 Unn=10 Rmax=6 .PARAM act=0.54 X1 d1 g s Tj K_240_b_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=1 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} Rth1 Tj t1 {166.55m+limit(Zthtype,0,1)*61.64m} Rth2 t1 t2 {730.55m+limit(Zthtype,0,1)*270.37m} Rth3 t2 t3 {2.71+limit(Zthtype,0,1)*733.69m} Rth4 t3 t4 {605m+limit(Zthtype,0,1)*2.11} Rth5 t4 Tcase {581m+limit(Zthtype,0,1)*2.03} Cth1 Tj 0 13.4u Cth2 t1 0 7.5u Cth3 t2 0 43.4u Cth4 t3 0 400u Cth5 t4 0 600u Cth6 Tcase 0 4m .ENDS *$ ******************** .SUBCKT BSP89 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 Zthtype=0 .PARAM Rs=0.027 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.35 Unn=10 Rmax=6 .PARAM act=0.54 X1 d1 g s Tj K_240_b_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=1 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} Rth1 Tj t1 {166.55m+limit(Zthtype,0,1)*61.64m} Rth2 t1 t2 {730.55m+limit(Zthtype,0,1)*270.37m} Rth3 t2 t3 {7.81+limit(Zthtype,0,1)*741.69m} Rth4 t3 t4 {7.4+limit(Zthtype,0,1)*9.35m} Rth5 t4 Tcase {7.8+limit(Zthtype,0,1)*9.85m} Cth1 Tj 0 13.4u Cth2 t1 0 7.5u Cth3 t2 0 149.668u Cth4 t3 0 1.95m Cth5 t4 0 48.845m .ENDS *$ ******************** .SUBCKT BSP88 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 Zthtype=0 .PARAM Rs=0.027 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.35 Unn=10 Rmax=6 .PARAM act=0.54 X1 d1 g s Tj K_240_c_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=1 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} Rth1 Tj t1 {166.55m+limit(Zthtype,0,1)*61.64m} Rth2 t1 t2 {730.55m+limit(Zthtype,0,1)*270.37m} Rth3 t2 t3 {7.81+limit(Zthtype,0,1)*741.69m} Rth4 t3 t4 {7.4+limit(Zthtype,0,1)*9.35m} Rth5 t4 Tcase {7.8+limit(Zthtype,0,1)*9.85m} Cth1 Tj 0 13.4u Cth2 t1 0 7.5u Cth3 t2 0 149.668u Cth4 t3 0 1.95m Cth5 t4 0 48.845m .ENDS *$ ******************** .SUBCKT BSP129 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 Zthtype=0 .PARAM Rs=0.027 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.025 Unn=0 Rmax=20 .PARAM act=0.54 X1 d1 g s Tj K_240_d_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=1 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} Rth1 Tj t1 {166.55m+limit(Zthtype,0,1)*61.64m} Rth2 t1 t2 {730.55m+limit(Zthtype,0,1)*270.37m} Rth3 t2 t3 {7.81+limit(Zthtype,0,1)*741.69m} Rth4 t3 t4 {7.4+limit(Zthtype,0,1)*9.35m} Rth5 t4 Tcase {7.8+limit(Zthtype,0,1)*9.85m} Cth1 Tj 0 13.4u Cth2 t1 0 7.5u Cth3 t2 0 149.668u Cth4 t3 0 1.95m Cth5 t4 0 48.845m .ENDS *$ ******************** .SUBCKT SISC0_97N24D drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 Zthtype=0 .PARAM Rs=0.005 Rg=10 .PARAM Inn=0.025 Unn=0 Rmax=20 .PARAM act=0.54 X1 drain g s Tj K_240_d_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=1 Rg gate g {Rg} Gs source s VALUE={V(source,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa source s 1Meg Rth1 Tj t1 {166.55m+limit(Zthtype,0,1)*61.64m} Rth2 t1 t2 {730.55m+limit(Zthtype,0,1)*270.37m} Rth3 t2 t3 {2+limit(Zthtype,0,1)*741.69m} Rth4 t3 t4 {1p+limit(Zthtype,0,1)*0p} Rth5 t4 Tcase {1p+limit(Zthtype,0,1)*0p} Cth1 Tj 0 13.4u Cth2 t1 0 7.5u Cth3 t2 0 149.668u Cth4 t3 0 1p Cth5 t4 0 1p .ENDS ******************** .SUBCKT BSS139 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 Zthtype=0 .PARAM Rs=0.074 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.015 Unn=0 Rmax=30 .PARAM act=0.28 X1 d1 g s Tj K_250_d_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=1 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} Rth1 Tj t1 {624.77m+limit(Zthtype,0,1)*231.23m} Rth2 t1 t2 {2.85+limit(Zthtype,0,1)*1.06} Rth3 t2 t3 {5.96+limit(Zthtype,0,1)*781.17m} Rth4 t3 t4 {68.15+limit(Zthtype,0,1)*58.03} Rth5 t4 Tcase {79.56+limit(Zthtype,0,1)*67.75} Cth1 Tj 0 10.376u Cth2 t1 0 17.965u Cth3 t2 0 180.456u Cth4 t3 0 374.154u Cth5 t4 0 4.696m .ENDS *$ ******************** .SUBCKT BSP324 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 Zthtype=0 .PARAM Rs=0.027 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.17 Unn=10 Rmax=25 .PARAM act=0.47 X1 d1 g s Tj K_400_a_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=1 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} Rth1 Tj t1 {685.56m+limit(Zthtype,0,1)*253.73m} Rth2 t1 t2 {2.03+limit(Zthtype,0,1)*756.67m} Rth3 t2 t3 {5.71+limit(Zthtype,0,1)*221.88m} Rth4 t3 t4 {5.53+limit(Zthtype,0,1)*810.97m} Rth5 t4 Tcase {7.85+limit(Zthtype,0,1)*1.15} Cth1 Tj 0 23.846u Cth2 t1 0 48.38u Cth3 t2 0 177.844u Cth4 t3 0 1.642m Cth5 t4 0 48.845m .ENDS *$ ******************** .SUBCKT SISC1_4N40E drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 Zthtype=0 .PARAM Rs=0.005 Rg=10 .PARAM Inn=0.17 Unn=10 Rmax=25 .PARAM act=0.47 X1 drain g s Tj K_400_a_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=1 Rg gate g {Rg} Gs source s VALUE={V(source,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa source s 1Meg Rth1 Tj t1 {685.56m+limit(Zthtype,0,1)*253.73m} Rth2 t1 t2 {2.03+limit(Zthtype,0,1)*756.67m} Rth3 t2 t3 {624.96m+limit(Zthtype,0,1)*222.92m} Rth4 t3 t4 {1p+limit(Zthtype,0,1)*0} Rth5 t4 Tcase {1p+limit(Zthtype,0,1)*0} Cth1 Tj 0 23.846u Cth2 t1 0 48.38u Cth3 t2 0 177.844u Cth4 t3 0 1p Cth5 t4 0 1p .ENDS *$ ******************** .SUBCKT BSP125 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 Zthtype=0 .PARAM Rs=0.027 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.12 Unn=10 Rmax=45 .PARAM act=0.47 X1 d1 g s Tj K_600_a_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=1 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} Rth1 Tj t1 {685.56m+limit(Zthtype,0,1)*253.73m} Rth2 t1 t2 {2.03+limit(Zthtype,0,1)*756.67m} Rth3 t2 t3 {5.71+limit(Zthtype,0,1)*221.88m} Rth4 t3 t4 {5.53+limit(Zthtype,0,1)*810.97m} Rth5 t4 Tcase {7.85+limit(Zthtype,0,1)*1.15} Cth1 Tj 0 23.846u Cth2 t1 0 48.38u Cth3 t2 0 177.844u Cth4 t3 0 1p Cth5 t4 0 1p .ENDS *$ ******************** .SUBCKT BSS225 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 Zthtype=0 .PARAM Rs=0.027 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.12 Unn=10 Rmax=45 .PARAM act=0.47 X1 d1 g s Tj K_600_a_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=1 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} Rth1 Tj t1 {166.55m+limit(Zthtype,0,1)*61.64m} Rth2 t1 t2 {730.55m+limit(Zthtype,0,1)*270.37m} Rth3 t2 t3 {2.8+limit(Zthtype,0,1)*892.38m} Rth4 t3 t4 {605m+limit(Zthtype,0,1)*1.99} Rth5 t4 Tcase {581m+limit(Zthtype,0,1)*1.91} Cth1 Tj 0 13.4u Cth2 t1 0 7.5u Cth3 t2 0 43.4u Cth4 t3 0 400u Cth5 t4 0 600u Cth6 Tcase 0 4m .ENDS ******************** .SUBCKT BSS127 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 Zthtype=0 .PARAM Rs=0.074 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.016 Unn=10 Rmax=500 .PARAM act=0.04 X1 d1 g s Tj K_600_a_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=1 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} Rth1 Tj t1 {1.05+limit(Zthtype,0,1)*384.82m} Rth2 t1 t2 {2.97+limit(Zthtype,0,1)*1.09} Rth3 t2 t3 {14.08+limit(Zthtype,0,1)*12.96} Rth4 t3 t4 {47.48+limit(Zthtype,0,1)*18.38} Rth5 t4 Tcase {30+limit(Zthtype,0,1)*11.61} Cth1 Tj 0 3.5u Cth2 t1 0 1.04u Cth3 t2 0 1.95u Cth4 t3 0 414u Cth5 t4 0 6.75m .ENDS ******************** .SUBCKT BSP135 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 Zthtype=0 .PARAM Rs=0.027 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.01 Unn=0 Rmax=60 .PARAM act=0.47 X1 d1 g s Tj K_600_d_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=1 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} Rth1 Tj t1 {685.56m+limit(Zthtype,0,1)*253.73m} Rth2 t1 t2 {2.03+limit(Zthtype,0,1)*756.67m} Rth3 t2 t3 {5.71+limit(Zthtype,0,1)*221.88m} Rth4 t3 t4 {5.53+limit(Zthtype,0,1)*810.97m} Rth5 t4 Tcase {7.85+limit(Zthtype,0,1)*1.15} Cth1 Tj 0 44.039u Cth2 t1 0 43.949u Cth3 t2 0 360.599u Cth4 t3 0 6.76m Cth5 t4 0 103.014m .ENDS *$ ******************** .SUBCKT SISC1_4N60D drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 Zthtype=0 .PARAM Rs=0.005 Rg=10 .PARAM Inn=0.01 Unn=0 Rmax=60 .PARAM act=0.47 X1 drain g s Tj K_600_d_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=1 Rg gate g {Rg} Gs source s VALUE={V(source,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa source s 1Meg Rth1 Tj t1 {685.56m+limit(Zthtype,0,1)*253.73m} Rth2 t1 t2 {2.03+limit(Zthtype,0,1)*756.67m} Rth3 t2 t3 {624.96m+limit(Zthtype,0,1)*222.92m} Rth4 t3 t4 {1p+limit(Zthtype,0,1)*0} Rth5 t4 Tcase {1p+limit(Zthtype,0,1)*0} Cth1 Tj 0 23.846u Cth2 t1 0 48.38u Cth3 t2 0 177.844u Cth4 t3 0 1p Cth5 t4 0 1p .ENDS *$ ******************** .SUBCKT BSS126 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 Zthtype=0 .PARAM Rs=0.074 Rg=0.9 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.003 Unn=0 Rmax=700 .PARAM act=0.04 X1 d1 g s Tj K_600_e_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=1 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} Rth1 Tj t1 {1.04+limit(Zthtype,0,1)*389.87m} Rth2 t1 t2 {2.96+limit(Zthtype,0,1)*1.09} Rth3 t2 t3 {14.09+limit(Zthtype,0,1)*12.96} Rth4 t3 t4 {73.48+limit(Zthtype,0,1)*47.39} Rth5 t4 Tcase {80+limit(Zthtype,0,1)*51.6} Cth1 Tj 0 3.529u Cth2 t1 0 1.042u Cth3 t2 0 1u Cth4 t3 0 374u Cth5 t4 0 4.7m .ENDS *$ .SUBCKT BSS131_L1 drain gate source PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 .PARAM Rs=0.074 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.1 Unn=10 Rmax=14 .PARAM act=0.28 X1 d1 g s Tj K_240_a_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=0 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} E1 Tj w VALUE={TEMP} R1 w 0 1u .ENDS *$ ********** .SUBCKT BSS87_L1 drain gate source PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 .PARAM Rs=0.082 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.26 Unn=10 Rmax=6 .PARAM act=0.54 X1 d1 g s Tj K_240_b_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=0 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} E1 Tj w VALUE={TEMP} R1 w 0 1u .ENDS *$ ********** .SUBCKT BSP89_L1 drain gate source PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 .PARAM Rs=0.027 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.35 Unn=10 Rmax=6 .PARAM act=0.54 X1 d1 g s Tj K_240_b_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=0 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} E1 Tj w VALUE={TEMP} R1 w 0 1u .ENDS *$ ********** .SUBCKT BSP88_L1 drain gate source PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 .PARAM Rs=0.027 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.35 Unn=10 Rmax=6 .PARAM act=0.54 X1 d1 g s Tj K_240_c_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=0 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} E1 Tj w VALUE={TEMP} R1 w 0 1u .ENDS *$ ********** .SUBCKT BSP129_L1a drain gate source PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 .PARAM Rs=0.027 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.025 Unn=0 Rmax=20 .PARAM act=0.54 X1 d1 g s Tj K_240_d_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=0 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} E1 Tj w VALUE={TEMP} R1 w 0 1u .ENDS *$ ********** .SUBCKT SISC0_97N24D_L1 drain gate source PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 .PARAM Rs=0.005 Rg=10 .PARAM Inn=0.025 Unn=0 Rmax=20 .PARAM act=0.54 X1 drain g s Tj K_240_d_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=0 Rg gate g {Rg} Gs source s VALUE={V(source,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa source s 1Meg E1 Tj w VALUE={TEMP} R1 w 0 1u .ENDS ********** .SUBCKT BSS139_L1 drain gate source PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 .PARAM Rs=0.074 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.015 Unn=0 Rmax=30 .PARAM act=0.28 X1 d1 g s Tj K_250_d_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=0 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} E1 Tj w VALUE={TEMP} R1 w 0 1u .ENDS *$ ********** .SUBCKT BSP324_L1 drain gate source PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 .PARAM Rs=0.027 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.17 Unn=10 Rmax=25 .PARAM act=0.47 X1 d1 g s Tj K_400_a_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=0 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} E1 Tj w VALUE={TEMP} R1 w 0 1u .ENDS *$ ********** .SUBCKT SISC1_4N40E_L1 drain gate source PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 .PARAM Rs=0.005 Rg=10 .PARAM Inn=0.17 Unn=10 Rmax=25 .PARAM act=0.47 X1 drain g s Tj K_400_a_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=0 Rg gate g {Rg} Gs source s VALUE={V(source,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa source s 1Meg E1 Tj w VALUE={TEMP} R1 w 0 1u .ENDS *$ ********** .SUBCKT BSP125_L1 drain gate source PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 .PARAM Rs=0.027 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.12 Unn=10 Rmax=45 .PARAM act=0.47 X1 d1 g s Tj K_600_a_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=0 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} E1 Tj w VALUE={TEMP} R1 w 0 1u .ENDS *$ ********** .SUBCKT BSS225_L1 drain gate source PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 .PARAM Rs=0.027 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.12 Unn=10 Rmax=45 .PARAM act=0.47 X1 d1 g s Tj K_600_a_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=0 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} E1 Tj w VALUE={TEMP} R1 w 0 1u .ENDS ********** .SUBCKT BSS127_L1 drain gate source PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 .PARAM Rs=0.074 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.016 Unn=10 Rmax=500 .PARAM act=0.04 X1 d1 g s Tj K_600_a_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=0 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} E1 Tj w VALUE={TEMP} R1 w 0 1u .ENDS ********** .SUBCKT BSP135_L1 drain gate source PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 .PARAM Rs=0.027 Rg=10 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.01 Unn=0 Rmax=60 .PARAM act=0.47 X1 d1 g s Tj K_600_d_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=0 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} E1 Tj w VALUE={TEMP} R1 w 0 1u .ENDS *$ ********** .SUBCKT SISC1_4N60D_L1 drain gate source PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 .PARAM Rs=0.005 Rg=10 .PARAM Inn=0.01 Unn=0 Rmax=60 .PARAM act=0.47 X1 drain g s Tj K_600_d_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=0 Rg gate g {Rg} Gs source s VALUE={V(source,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa source s 1Meg E1 Tj w VALUE={TEMP} R1 w 0 1u .ENDS ********** .SUBCKT BSS126_L1 drain gate source PARAMS: dVth=0 dRdson=0 dgfs=0 dC=0 .PARAM Rs=0.074 Rg=0.9 Ls=3n Ld=1n Lg=3n .PARAM Inn=0.003 Unn=0 Rmax=700 .PARAM act=0.04 X1 d1 g s Tj K_600_e_var PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn} +Rmax={Rmax} dgfs={dgfs} Rs={Rs} dC={dC} heat=0 Rg g1 g {Rg} Lg gate g1 {Lg*if(dgfs==99,0,1)} Gs s1 s VALUE={V(s1,s)/(Rs*(1+(limit(V(Tj),-200,999)-25)*4m))} Rsa s1 s 1Meg Ls source s1 {Ls*if(dgfs==99,0,1)} Ld drain d1 {Ld*if(dgfs==99,0,1)} E1 Tj w VALUE={TEMP} R1 w 0 1u .ENDS ********** .SUBCKT BSS131_L0 drain gate source Lg gate g1 3n Ld drain d1 1n Ls source s1 3n Rs s1 s2 0.074 Rg g1 g2 10 M1 d2 g2 s2 s2 DMOS L=1u W=1u .MODEL DMOS NMOS ( KP= 0.223 VTO=1.6 THETA=0 VMAX=1.5e5 ETA=0 LEVEL=3) Rd d2 d1a 6.07 TC=11m .MODEL MVDR NMOS (KP=0.55 VTO=-1.4 LAMBDA=0.15) Mr d1 d2a d1a d1a MVDR W=1u L=1u Rx d2a d1a 1m Dbd s2 d2 Dbt .MODEL Dbt D(BV=290 M=0.5 CJO=34.44p VJ=0.5V) Dbody s2 21 DBODY .MODEL DBODY D(IS=7p N=1.2 RS=475u EG=1.12 TT=60n) Rdiode d1 21 714.29m TC=1m .MODEL sw NMOS(VTO=0 KP=10 LEVEL=1) Maux g2 c a a sw Maux2 b d g2 g2 sw Eaux c a d2 g2 1 Eaux2 d g2 d2 g2 -1 Cox b d2 99.4p .MODEL DGD D(M=1 CJO=99.4p VJ=0.5) Rpar b d2 1Meg Dgd a d2 DGD Rpar2 d2 a 10Meg Cgs g2 s2 55.44p .ENDS BSS131_L0 ****** .SUBCKT BSS87_L0 drain gate source Lg gate g1 3n Ld drain d1 1n Ls source s1 3n Rs s1 s2 0.082 Rg g1 g2 10 M1 d2 g2 s2 s2 DMOS L=1u W=1u .MODEL DMOS NMOS ( KP= 0.486 VTO=1.7 THETA=0 VMAX=1.5e5 ETA=0 LEVEL=3) Rd d2 d1a 3.15 TC=11m .MODEL MVDR NMOS (KP=1.05 VTO=-1.4 LAMBDA=0.15) Mr d1 d2a d1a d1a MVDR W=1u L=1u Rx d2a d1a 1m Dbd s2 d2 Dbt .MODEL Dbt D(BV=290 M=0.5 CJO=66.42p VJ=0.5V) Dbody s2 21 DBODY .MODEL DBODY D(IS=13.5p N=1.2 RS=246u EG=1.12 TT=60n) Rdiode d1 21 370.37m TC=1m .MODEL sw NMOS(VTO=0 KP=10 LEVEL=1) Maux g2 c a a sw Maux2 b d g2 g2 sw Eaux c a d2 g2 1 Eaux2 d g2 d2 g2 -1 Cox b d2 180.9p .MODEL DGD D(M=0.76 CJO=180.9p VJ=0.5) Rpar b d2 1Meg Dgd a d2 DGD Rpar2 d2 a 10Meg Cgs g2 s2 75.06p .ENDS BSS87_L0 ****** .SUBCKT BSP89_L0 drain gate source Lg gate g1 3n Ld drain d1 1n Ls source s1 3n Rs s1 s2 0.027 Rg g1 g2 10 M1 d2 g2 s2 s2 DMOS L=1u W=1u .MODEL DMOS NMOS ( KP= 0.486 VTO=1.7 THETA=0 VMAX=1.5e5 ETA=0 LEVEL=3) Rd d2 d1a 3.15 TC=11m .MODEL MVDR NMOS (KP=1.05 VTO=-1.4 LAMBDA=0.15) Mr d1 d2a d1a d1a MVDR W=1u L=1u Rx d2a d1a 1m Dbd s2 d2 Dbt .MODEL Dbt D(BV=290 M=0.5 CJO=66.42p VJ=0.5V) Dbody s2 21 DBODY .MODEL DBODY D(IS=13.5p N=1.2 RS=246u EG=1.12 TT=60n) Rdiode d1 21 370.37m TC=1m .MODEL sw NMOS(VTO=0 KP=10 LEVEL=1) Maux g2 c a a sw Maux2 b d g2 g2 sw Eaux c a d2 g2 1 Eaux2 d g2 d2 g2 -1 Cox b d2 180.9p .MODEL DGD D(M=0.76 CJO=180.9p VJ=0.5) Rpar b d2 1Meg Dgd a d2 DGD Rpar2 d2 a 10Meg Cgs g2 s2 75.06p .ENDS BSP89_L0 ****** .SUBCKT BSP88_L0 drain gate source Lg gate g1 3n Ld drain d1 1n Ls source s1 3n Rs s1 s2 0.027 Rg g1 g2 10 M1 d2 g2 s2 s2 DMOS L=1u W=1u .MODEL DMOS NMOS ( KP= 0.486 VTO=1.3 THETA=0 VMAX=1.5e5 ETA=0 LEVEL=3) Rd d2 d1a 3.15 TC=11m .MODEL MVDR NMOS (KP=0.89 VTO=-1.4 LAMBDA=0.15) Mr d1 d2a d1a d1a MVDR W=1u L=1u Rx d2a d1a 1m Dbd s2 d2 Dbt .MODEL Dbt D(BV=290 M=0.5 CJO=66.42p VJ=0.5V) Dbody s2 21 DBODY .MODEL DBODY D(IS=13.5p N=1.2 RS=246u EG=1.12 TT=60n) Rdiode d1 21 370.37m TC=1m .MODEL sw NMOS(VTO=0 KP=10 LEVEL=1) Maux g2 c a a sw Maux2 b d g2 g2 sw Eaux c a d2 g2 1 Eaux2 d g2 d2 g2 -1 Cox b d2 180.9p .MODEL DGD D(M=0.77 CJO=180.9p VJ=0.5) Rpar b d2 1Meg Dgd a d2 DGD Rpar2 d2 a 10Meg Cgs g2 s2 75.06p .ENDS BSP88_L0 ****** .SUBCKT BSP129_L0 drain gate source Lg gate g1 3n Ld drain d1 1n Ls source s1 3n Rs s1 s2 0.027 Rg g1 g2 10 M1 d2 g2 s2 s2 DMOS L=1u W=1u .MODEL DMOS NMOS ( KP= 0.486 VTO=-0.85 THETA=0 VMAX=1.5e5 ETA=0 LEVEL=3) Rd d2 d1a 3.15 TC=11m .MODEL MVDR NMOS (KP=1.05 VTO=-1.4 LAMBDA=0.15) Mr d1 d2a d1a d1a MVDR W=1u L=1u Rx d2a d1a 1m Dbd s2 d2 Dbt .MODEL Dbt D(BV=290 M=0.5 CJO=66.42p VJ=0.5V) Dbody s2 21 DBODY .MODEL DBODY D(IS=13.5p N=1.2 RS=246u EG=1.12 TT=60n) Rdiode d1 21 370.37m TC=1m .MODEL sw NMOS(VTO=0 KP=10 LEVEL=1) Maux g2 c a a sw Maux2 b d g2 g2 sw Eaux c a d2 g2 1 Eaux2 d g2 d2 g2 -1 Cox b d2 180.9p .MODEL DGD D(M=0.66 CJO=180.9p VJ=0.5) Rpar b d2 1Meg Dgd a d2 DGD Rpar2 d2 a 10Meg Cgs g2 s2 75.06p .ENDS BSP129_L0 ****** .SUBCKT SISC0_97N24D_L0 drain gate source Rs source s2 0.005 Rg gate g2 10 M1 d2 g2 s2 s2 DMOS L=1u W=1u .MODEL DMOS NMOS ( KP= 0.486 VTO=-0.85 THETA=0 VMAX=1.5e5 ETA=0 LEVEL=3) Rd d2 d1a 3.15 TC=11m .MODEL MVDR NMOS (KP=1.05 VTO=-1.4 LAMBDA=0.15) Mr drain d2a d1a d1a MVDR W=1u L=1u Rx d2a d1a 1m Dbd s2 d2 Dbt .MODEL Dbt D(BV=290 M=0.5 CJO=66.42p VJ=0.5V) Dbody s2 21 DBODY .MODEL DBODY D(IS=13.5p N=1.2 RS=246u EG=1.12 TT=60n) Rdiode drain 21 370.37m TC=1m .MODEL sw NMOS(VTO=0 KP=10 LEVEL=1) Maux g2 c a a sw Maux2 b d g2 g2 sw Eaux c a d2 g2 1 Eaux2 d g2 d2 g2 -1 Cox b d2 180.9p .MODEL DGD D(M=0.66 CJO=180.9p VJ=0.5) Rpar b d2 1Meg Dgd a d2 DGD Rpar2 d2 a 10Meg Cgs g2 s2 75.06p .ENDS SISC0_97N24D_L0 ****** .SUBCKT BSS139_L0 drain gate source Lg gate g1 3n Ld drain d1 1n Ls source s1 3n Rs s1 s2 0.074 Rg g1 g2 10 M1 d2 g2 s2 s2 DMOS L=1u W=1u .MODEL DMOS NMOS ( KP= 0.223 VTO=-0.89 THETA=0 VMAX=1.5e5 ETA=0 LEVEL=3) Rd d2 d1a 7.14 TC=11m .MODEL MVDR NMOS (KP=0.55 VTO=-1.4 LAMBDA=0.15) Mr d1 d2a d1a d1a MVDR W=1u L=1u Rx d2a d1a 1m Dbd s2 d2 Dbt .MODEL Dbt D(BV=295 M=0.5 CJO=34.44p VJ=0.5V) Dbody s2 21 DBODY .MODEL DBODY D(IS=7p N=1.2 RS=475u EG=1.12 TT=60n) Rdiode d1 21 714.29m TC=1m .MODEL sw NMOS(VTO=0 KP=10 LEVEL=1) Maux g2 c a a sw Maux2 b d g2 g2 sw Eaux c a d2 g2 1 Eaux2 d g2 d2 g2 -1 Cox b d2 106.12p .MODEL DGD D(M=0.66 CJO=106.12p VJ=0.5) Rpar b d2 1Meg Dgd a d2 DGD Rpar2 d2 a 10Meg Cgs g2 s2 55.44p .ENDS BSS139_L0 ****** .SUBCKT BSP324_L0 drain gate source Lg gate g1 3n Ld drain d1 1n Ls source s1 3n Rs s1 s2 0.027 Rg g1 g2 10 M1 d2 g2 s2 s2 DMOS L=1u W=1u .MODEL DMOS NMOS ( KP= 0.273 VTO=2.27 THETA=0 VMAX=1.5e5 ETA=0 LEVEL=3) Rd d2 d1a 12.23 TC=11m .MODEL MVDR NMOS (KP=0.4 VTO=-1.4 LAMBDA=0.15) Mr d1 d2a d1a d1a MVDR W=1u L=1u Rx d2a d1a 1m Dbd s2 d2 Dbt .MODEL Dbt D(BV=495 M=0.5 CJO=57.81p VJ=0.5V) Dbody s2 21 DBODY .MODEL DBODY D(IS=11.8p N=1.2 RS=283u EG=1.12 TT=80n) Rdiode d1 21 425.53m TC=0 .MODEL sw NMOS(VTO=0 KP=10 LEVEL=1) Maux g2 c a a sw Maux2 b d g2 g2 sw Eaux c a d2 g2 1 Eaux2 d g2 d2 g2 -1 Cox b d2 220.9p .MODEL DGD D(M=0.97 CJO=220.9p VJ=0.5) Rpar b d2 1Meg Dgd a d2 DGD Rpar2 d2 a 10Meg Cgs g2 s2 95.88p .ENDS BSP324_L0 ****** .SUBCKT SISC1_4N40E_L0 drain gate source Rs source s2 0.005 Rg gate g2 10 M1 d2 g2 s2 s2 DMOS L=1u W=1u .MODEL DMOS NMOS ( KP= 0.273 VTO=2.27 THETA=0 VMAX=1.5e5 ETA=0 LEVEL=3) Rd d2 d1a 12.23 TC=11m .MODEL MVDR NMOS (KP=0.4 VTO=-1.4 LAMBDA=0.15) Mr drain d2a d1a d1a MVDR W=1u L=1u Rx d2a d1a 1m Dbd s2 d2 Dbt .MODEL Dbt D(BV=495 M=0.5 CJO=57.81p VJ=0.5V) Dbody s2 21 DBODY .MODEL DBODY D(IS=11.8p N=1.2 RS=283u EG=1.12 TT=80n) Rdiode drain 21 425.53m TC=0 .MODEL sw NMOS(VTO=0 KP=10 LEVEL=1) Maux g2 c a a sw Maux2 b d g2 g2 sw Eaux c a d2 g2 1 Eaux2 d g2 d2 g2 -1 Cox b d2 220.9p .MODEL DGD D(M=0.97 CJO=220.9p VJ=0.5) Rpar b d2 1Meg Dgd a d2 DGD Rpar2 d2 a 10Meg Cgs g2 s2 95.88p .ENDS SISC1_4N40E_L0 ****** .SUBCKT BSP125_L0 drain gate source Lg gate g1 3n Ld drain d1 1n Ls source s1 3n Rs s1 s2 0.027 Rg g1 g2 10 M1 d2 g2 s2 s2 DMOS L=1u W=1u .MODEL DMOS NMOS ( KP= 0.273 VTO=2.27 THETA=0 VMAX=1.5e5 ETA=0 LEVEL=3) Rd d2 d1a 23.4 TC=11m .MODEL MVDR NMOS (KP=0.24 VTO=-1.4 LAMBDA=0.15) Mr d1 d2a d1a d1a MVDR W=1u L=1u Rx d2a d1a 1m Dbd s2 d2 Dbt .MODEL Dbt D(BV=650 M=0.5 CJO=57.81p VJ=0.5V) Dbody s2 21 DBODY .MODEL DBODY D(IS=11.8p N=1.2 RS=283u EG=1.12 TT=130n) Rdiode d1 21 425.53m TC=0 .MODEL sw NMOS(VTO=0 KP=10 LEVEL=1) Maux g2 c a a sw Maux2 b d g2 g2 sw Eaux c a d2 g2 1 Eaux2 d g2 d2 g2 -1 Cox b d2 220.9p .MODEL DGD D(M=1 CJO=220.9p VJ=0.5) Rpar b d2 1Meg Dgd a d2 DGD Rpar2 d2 a 10Meg Cgs g2 s2 95.88p .ENDS BSP125_L0 ****** .SUBCKT BSS225_L0 drain gate source Lg gate g1 3n Ld drain d1 1n Ls source s1 3n Rs s1 s2 0.027 Rg g1 g2 10 M1 d2 g2 s2 s2 DMOS L=1u W=1u .MODEL DMOS NMOS ( KP= 0.273 VTO=2.27 THETA=0 VMAX=1.5e5 ETA=0 LEVEL=3) Rd d2 d1a 23.4 TC=11m .MODEL MVDR NMOS (KP=0.24 VTO=-1.4 LAMBDA=0.15) Mr d1 d2a d1a d1a MVDR W=1u L=1u Rx d2a d1a 1m Dbd s2 d2 Dbt .MODEL Dbt D(BV=650 M=0.5 CJO=57.81p VJ=0.5V) Dbody s2 21 DBODY .MODEL DBODY D(IS=11.8p N=1.2 RS=283u EG=1.12 TT=130n) Rdiode d1 21 425.53m TC=0 .MODEL sw NMOS(VTO=0 KP=10 LEVEL=1) Maux g2 c a a sw Maux2 b d g2 g2 sw Eaux c a d2 g2 1 Eaux2 d g2 d2 g2 -1 Cox b d2 220.9p .MODEL DGD D(M=1 CJO=220.9p VJ=0.5) Rpar b d2 1Meg Dgd a d2 DGD Rpar2 d2 a 10Meg Cgs g2 s2 95.88p .ENDS BSS225_L0 ****** .SUBCKT BSP135_L0 drain gate source Lg gate g1 3n Ld drain d1 1n Ls source s1 3n Rs s1 s2 0.027 Rg g1 g2 10 M1 d2 g2 s2 s2 DMOS L=1u W=1u .MODEL DMOS NMOS ( KP= 0.273 VTO=-0.93 THETA=0 VMAX=1.5e5 ETA=0 LEVEL=3) Rd d2 d1a 21.91 TC=11m .MODEL MVDR NMOS (KP=0.24 VTO=-1.4 LAMBDA=0.15) Mr d1 d2a d1a d1a MVDR W=1u L=1u Rx d2a d1a 1m Dbd s2 d2 Dbt .MODEL Dbt D(BV=650 M=0.5 CJO=57.81p VJ=0.5V) Dbody s2 21 DBODY .MODEL DBODY D(IS=11.8p N=1.2 RS=283u EG=1.12 TT=130n) Rdiode d1 21 425.53m TC=0 .MODEL sw NMOS(VTO=0 KP=10 LEVEL=1) Maux g2 c a a sw Maux2 b d g2 g2 sw Eaux c a d2 g2 1 Eaux2 d g2 d2 g2 -1 Cox b d2 213.85p .MODEL DGD D(M=0.7 CJO=213.85p VJ=0.5) Rpar b d2 1Meg Dgd a d2 DGD Rpar2 d2 a 10Meg Cgs g2 s2 95.88p .ENDS BSP135_L0 ****** .SUBCKT SISC1_4N60D_L0 drain gate source Rs source s2 0.005 Rg gate g2 10 M1 d2 g2 s2 s2 DMOS L=1u W=1u .MODEL DMOS NMOS ( KP= 0.273 VTO=-0.93 THETA=0 VMAX=1.5e5 ETA=0 LEVEL=3) Rd d2 d1a 21.91 TC=11m .MODEL MVDR NMOS (KP=0.24 VTO=-1.4 LAMBDA=0.15) Mr drain d2a d1a d1a MVDR W=1u L=1u Rx d2a d1a 1m Dbd s2 d2 Dbt .MODEL Dbt D(BV=650 M=0.5 CJO=57.81p VJ=0.5V) Dbody s2 21 DBODY .MODEL DBODY D(IS=11.8p N=1.2 RS=283u EG=1.12 TT=130n) Rdiode drain 21 425.53m TC=0 .MODEL sw NMOS(VTO=0 KP=10 LEVEL=1) Maux g2 c a a sw Maux2 b d g2 g2 sw Eaux c a d2 g2 1 Eaux2 d g2 d2 g2 -1 Cox b d2 213.85p .MODEL DGD D(M=0.7 CJO=213.85p VJ=0.5) Rpar b d2 1Meg Dgd a d2 DGD Rpar2 d2 a 10Meg Cgs g2 s2 95.88p .ENDS SISC1_4N60D_L0 ****** .SUBCKT BSS127_L0 drain gate source Lg gate g1 3n Ld drain d1 1n Ls source s1 3n Rs s1 s2 0.074 Rg g1 g2 10 M1 d2 g2 s2 s2 DMOS L=1u W=1u .MODEL DMOS NMOS ( KP= 0.023 VTO=2.27 THETA=0 VMAX=1.5e5 ETA=0 LEVEL=3) Rd d2 d1a 275 TC=11m .MODEL MVDR NMOS (KP=0.02 VTO=-1.4 LAMBDA=0.15) Mr d1 d2a d1a d1a MVDR W=1u L=1u Rx d2a d1a 1m Dbd s2 d2 Dbt .MODEL Dbt D(BV=650 M=0.5 CJO=4.92p VJ=0.5V) Dbody s2 21 DBODY .MODEL DBODY D(IS=1p N=1.2 RS=3325u EG=1.12 TT=130n) Rdiode d1 21 5000m TC=0 .MODEL sw NMOS(VTO=0 KP=10 LEVEL=1) Maux g2 c a a sw Maux2 b d g2 g2 sw Eaux c a d2 g2 1 Eaux2 d g2 d2 g2 -1 Cox b d2 18.8p .MODEL DGD D(M=1 CJO=18.8p VJ=0.5) Rpar b d2 1Meg Dgd a d2 DGD Rpar2 d2 a 10Meg Cgs g2 s2 8.16p .ENDS BSS127_L0 ****** .SUBCKT BSS126_L0 drain gate source Lg gate g1 3n Ld drain d1 1n Ls source s1 3n Rs s1 s2 0.074 Rg g1 g2 10 M1 d2 g2 s2 s2 DMOS L=1u W=1u .MODEL DMOS NMOS ( KP= 0.03 VTO=-1.53 THETA=0 VMAX=1.5e5 ETA=0 LEVEL=3) Rd d2 d1a 275 TC=11m .MODEL MVDR NMOS (KP=0.02 VTO=-1.4 LAMBDA=0.15) Mr d1 d2a d1a d1a MVDR W=1u L=1u Rx d2a d1a 1m Dbd s2 d2 Dbt .MODEL Dbt D(BV=650 M=0.5 CJO=4.92p VJ=0.5V) Dbody s2 21 DBODY .MODEL DBODY D(IS=1p N=1.2 RS=3325u EG=1.12 TT=130n) Rdiode d1 21 5000m TC=0 .MODEL sw NMOS(VTO=0 KP=10 LEVEL=1) Maux g2 c a a sw Maux2 b d g2 g2 sw Eaux c a d2 g2 1 Eaux2 d g2 d2 g2 -1 Cox b d2 24p .MODEL DGD D(M=0.6 CJO=24p VJ=0.5) Rpar b d2 1Meg Dgd a d2 DGD Rpar2 d2 a 10Meg Cgs g2 s2 20p .ENDS BSS126_L0 ************ .SUBCKT BSP300_L0 drain gate source Lg gate g1 3n Ld drain d1 2n Ls source s1 3n Rs s1 s2 0.074 Rg g1 g2 10 M1 d2 g2 s2 s2 DMOS L=1u W=1u .MODEL DMOS NMOS ( KP= 0.4 VTO=3.4 THETA=0 VMAX=1.5e5 ETA=0 LEVEL=3) Rd d2 d1a 15 TC=5.5m .MODEL MVDR NMOS (KP=3.83 VTO=-1.4 LAMBDA=0.15) Mr d1 d2a d1a d1a MVDR W=1u L=1u Rx d2a d1a 1m Dbd s2 d2 Dbt .MODEL Dbt D(BV=800 M=0.5 CJO=200p VJ=0.5V) Dbody s2 21 DBODY .MODEL DBODY D(IS=3p N=1 RS=30u EG=1.12 TT=700n) Rdiode d1 21 0.8 TC=0 .MODEL sw NMOS(VTO=0 KP=10 LEVEL=1) Maux g2 c a a sw Maux2 b d g2 g2 sw Eaux c a d2 g2 1 Eaux2 d g2 d2 g2 -1 Cox b d2 900p .MODEL DGD D(M=0.97 CJO=400p VJ=0.5) Rpar b d2 1Meg Dgd a d2 DGD Rpar2 d2 a 10Meg Cgs g2 s2 170p .ENDS BSP300_L0 ******