* C:\Users\kelvinleung\Downloads\Ind3phMotor\IndMot3phTest.asc Vb B 0 SINE(0 {A0} {F0} 0 0 -120) Va A 0 SINE(0 {A0} {F0} 0 0 0) Vc C 0 SINE(0 {A0} {F0} 0 0 120) XX1 A B C W N RPM M indmot3ph B_Load W 0 I=T0*Torque0(V(w)/w0) * block symbol definitions .subckt indmot3ph A B C W N RPM M Ra A P001 {Rs} La P001 N {Ls} Rb B N001 {Rs} Lb N001 N {Ls} Rc C N004 {Rs} Lc N004 N {Ls} Lx N006 N005 {Lr2} Rx N005 0 {Rr2} Bx N006 0 V=-Np*V(w)*(Lm*s3/2*(I(Lb)-I(Lc))+Lr2*I(Ly)) Ly N002 N003 {Lr2} Ry N003 0 {Rr2} By N002 0 V=Np*V(w)*(3/2*Lm*I(La)+Lr2*I(Lx)) *Bt 0 W I=Np*s3/2*Lm*((I(Lb)-I(Lc))*I(Lx)-s3*I(La)*I(Ly)) Bt T1 W I=Np*s3/2*Lm*((I(Lb)-I(Lc))*I(Lx)-s3*I(La)*I(Ly)) Vt T1 0 0 Cw W 0 {J} Bn RPM 0 V=V(W)/2/Pi*60 *Bm M 0 V=I(Bt) Bm M 0 V=I(Vt) .param Np=2; Stator Pole Number .param J=0.62; Moment of Inertia .param k1=0.97; Mutual Coupling Coeff .param Ls=29.4m; Stator Induction .param Lr=29.7m; Rotor Induction .param Rs=67m; Stator Resistance .param Rr=32m; Rotor Resistance .param Lr2=Lr*3/2 Rr2=Rr*3/2 + Lm=sqrt(Ls*Lr)*k1 + k0=Lm/sqrt(Ls*Lr2) + s3=sqrt(3) Kax La Lx {k0} Kbx Lb Lx {-k0/2} Kby Lb Ly {k0*s3/2} Kcx Lc Lx {-k0/2} Kcy Lc Ly {-k0*s3/2} .ends indmot3ph .tran 2 uic .param A0=300 F0=50 ; Torque Laws .func Torque0(x) {0} ; Free Run .func TorqueC(x) { sgn(x)*u(abs(x)-0.1) }; Constant .func Torque1(x) { x }; Viscouse Friction .func Torque2(x) { sgn(x)*x**2 }; Friction x^2 * Induction 3-phase Motor by Sohor & Kubov\nPPM - rotations per minute \nW - angular speed. Point of Load {Rad/s}\nM - Magnetic Torque {N*m}\nA,B,C - electric phases\nN - electric Neutral .param w0=2*Pi*50/2 T0=60 .backanno .end