Three Complexity Levels of
PWM Implementation for Digital
Controller Simulation

By: Arief Noor Rahman

Background

e Qspice has great improvement over its predecessor (LTspice). My favorite
feature is the added support for custom digital block (C and Verilog). Which
allows more efficient and more direct implementation of various control,
analysis, and signal processing algorithm (instead of using circuit/behavioral
source or as post processing).

* This article provides a method on how to use C-block to achieve digital smps
simulation as fast and as accurate as possible.

* Some background information about the C-block implementation as well as
my own understanding of the interaction between main Spice solver with the
C-block are provided.

Structure of C-block

for Qspice

w

L R

Vo w

o5

Lk

¥

/¢ To build with Digital Mars C++ Compiler:

#include
$#include
#include
#include
#include

union uData

dec 29 09:11:46 2023 %
-

Mutomatically generated C++ file om Fri

ou

X1
Buck_X1

dmc -mn -WD buck xl.cpp kernel3Z.lib

<stdio.h>
<malloc.h>
<stdarg.h>
<time.h>
<math.h>

S N this union defined all the data types used
char or for the input/output for the C-block. we
unsigned char ue; can leaveit asis.
short 5;
unsigned short uas;
int i;
unsigned int ui;
float £; . e . . .
double d: this is something to do with how windows
long long int 164: load the .dll and allow the code to be
gnetaned long Long int uisds called. we can leave it as is
char *str; :)
unsigned char *bytes;

—};
/f int Dl11Main({) mast exist and return 1 for a process to load the .DLL
J/f See https://docs.microscft.com/en-us/windows/win32/dlls/dllmain for more information.
int _ stdcall DllMain(void *module, unsigned int reason, void *reserved) { return 1; }
wvoid display({ccnst char *fmt, ...)

H1{ 77 for diagnostic print statements

-1

=

useful to print some statements on the
Qspice console. But remember to not
overuse it, because it use msleep(30) to
wait so that the Qspice can fetch the print
out statements. However, it also slows
down the sim each time display() is

msleep (30} ;

fflush {stdout) ;
va_list args = { [}:
va_start(args, fmt):;
vprintf (fmt, args):
va_end (args) ;

fflush (atdout)
maleep (0}

h—

Cafted:

wold kzero(void *ptr, unsigned int count)

unsigned char *first = (unsigned char *) ptr;
unsigned char *last = first + count:

*firat++ = "0 ;

upon call bzero(), it reset all the value in
the struct sBUCK_X1 to zero

while(first < last) \

Vo

=

o

// #undef pin names lest they cocllide with names in any header file(s) you might include.

user can define most of all data in struct
sBUCK_X1. the data defined in sBUCK_X1
will be maintained by Qspice throughout
all the simulation, even when negative
timestep is applied.

*data)

#unde=f in
#undef out
atruct sBUCE X1
{
f/ declare the structure here
bi
extern " _ declspec({dllexport) woid buck xl({struct sBUCK_ X1 *+*opaque, doubls t, union uData
==
double in = data[0].d: // input
double &out = data[l].d: // ocutput

if (Y *opague)

main function for all the algorithm
implementation.

*note: things in if(lopaque){} will be
executed once at the beginning of the
simulation. users can put some
calculation there that just need to run

Qspice will call this function to determine
the maximum allowable time step. Qspice
“takes into account all suggestion from all
r lcomponents in the simulation

Qspice calls this function to read if there
is any suggestion for the next timestep.
Qspice take into account all suggestion

from all components in the simulation.

This function only called once upon the
termination of the simulation.

H
*opaque = (struct sBUCK X1 *) malloc(sizeof (struct sBUCK_X1)}:
bzero(*opaque, sizeof (struct sBUCK_X1)):
-1
struct sBUCK X1 *inst = *opaque;
once.
!/ Implement module evaluation code here:
=}
extern "C" _ declspec(dllexport) double MaxExtStepSize(struct sBUCK X1 *inst) e
{
T return 1=308; // implement a good choice of max timestep size that depends on struct sBUCK| X
}
extern "C" _ declspec(dllexport) wvoid Trunc(struct sBUCK X1 *inst, double t, union uData *data, double *timestep)
L:_l{ S/ limit the timestep to a tolerance if the circuit causes a change in struct sBUCK X1
const double ttol = l=-9;
if (*timestep > ttol)
H o
double &out = data[l].d; // Cutl:uN—
/f Save output vector
const doubkls _out = out:
atruct sBUCE X1 tmp = *inst:
buck_x1(&(&tmp) , t, data):
f// if{tmp !'= *inst) // implement a meaningful way to detect if the state has changed
/f ‘timestep = ttol;
// Restore output vector
out = _out;
-1
1
extern "C" _ declspec(dllexport) void Destroy(struct sBUCE_X1 *inst) /

free(inst):

I

Tricky Parts about C-block and Timing within Qspice

1. Qspice use variable timestep, furthermore upon nonlinearity event detection (i.e. transistor switching, or diode on DCM), Qspice can
even apply negative timestep to ensure the exact timing of the non-linear event is properly captured.

This behavior can mess up with C-block as most control/signal processing algorithm are not designed with negative timestep. Where it
can cause the user’s algorithm to be called multitle time for the same simulation run time. To avoid this, ensure that the variables that is
sensitive to simulation runtime must be defined within the struct sBuck_ X1

2. Trunc() is used to provide suggestion of next timestep. The primary suggestion from the template is based on the working principle of
Qspice own’s variable timestep algorithm, where if the result of the next timestep induces a nonlinearity then revert back to the
minimum timestep. After trying with minimum timestep for a few steps, then next timestep is double of the current timestep. The
timestep will keep increasing until max timestep is reach or nonlinearity event is detected.

To speed up the simulation, in case of digital control smps, we can exploit the characteristic of the digital pwm implementation where
the duty cycle for the of the future switching period is defined by the last sampling period. Means we can set send the Qspice solver the
next timestep suggestion to directly hit the next transistor switching time.

*note: Qspice takes in the smallest maxtimestep and smallest timestep suggestion from all components in the simulation schematic

Timing Control Implementation Algorithm

pwm_output

pwm_prd

pwm carrier

pwm_cphp_next

EERERER

2 t3 ty

el

Set trigger flag

Compute the controller next duty
Compute (next time stamp) t1, t2, t3, t4

next next next next
ty ty taNeXt ¢,

A

for output with deadtime, pwm_delay is
generated by creating one additional time
stamp when simulation time:

a. hitt1_next att1_next + dtime

or

b. hit t2 next at t2 next + dtime

when simulation time hits t1_next + dtime or
t2_next + dtime, the pwm_delay will copy the
value of the pwm_output

pwm_hi = pwm_output & pwm_delay
pwm_lo = !pwm_output & !pwm_delay

Set pwm_output
Set trigger flag

Clear pwm_output
Set trigger_flag

Set trigger flag

Trunc() will read t1, t2, 13, 14, and trigger_flag

It will set the next time_step suggestion for
Qspice directly to the nearest future timing
mark.

In case trigger flag is set, if the nearest future
time stamp is greater than timing tolerance,
then next time step will be set at timing
tolerance.

The three levels of complexity

Level 1 : C-block only for control algorithm

s 0som 0 100n vou—fo ity In this approach, C-block only performs the control algorithm that read analog feedback
model SWH SW Rone 1 Roffo 1056 Vec0 5 Voot ioietn O FK X and send out duty cycle command. Sampling timing control for C-block is provided by the
.model SWL SW Ron=1m Roff=10E6 Vt=-0.5 Vh=-1 ttol=1n . N .
odel DD D Ron=1m Roff=1085 Vhid=2 clk (V3) and the pwm pulse output is provided by carrier (V2) and comparator (B2).
carrier clk
V2 V3

D1 PULSE 0 200 0 2 2 0 2 PULSE 01000 2 4p

o T Y | | Note 1: Model definition for SWH and SWL have parameter ttol=1n to force Qspice to
L2 |02 iltn J_q J_cz N iterate around the exact switching event with the accuracy down to 1ns. Additionally,
L fon Too Ty aw T 7 Qspice also conduct some iteration around the peak and valley of the carrier triangle
§=(V(m>v(camer» %ﬂ(m I Imﬂ waveform and at the rise/fall time of clk source.

Runtime = 2.338s

@ QDWDQ:SP\CE"‘ - Buck.qraw - - u] X

N Note 3: This method is the simplest, however the multiple timestep iteration around the

e discontinuity event can increase the total simulation time, especially for complex simulation
with higher number of switches.

Puseo1omootomaom NOte 2: Simulation exhibit some strange unrealistic oscillation, thus the solver changed to
gear which have oscillation damping behavior. The oscillation still occurs in the simulation.

I(L1)

V(vout)

The three levels of complexity

Level 2 : C-block for control and basic pwm generation

Aran050m 01
.options method=trap

.model SWH SW Ron=1m Roff=10E6 Vt=0.5 Vh=-1
.model SWL SW Ron=1m Roff=10E6 Vt=-0.5 Vh=-1

.model DD D Ron=1m Roff=10E6 Vfwd=2

vout—]
isense—

vout

carrier—pwm_carrier

isense pwm—pwm_pulse

duty—duty
iref—iref

X2 outl—outl
epwm

outZ—out2

4.7p
D2 rser=2m Ci
isense

Runtime = 0.985s

| ® Qorvo QSPICE™ - Buckagraw
| it View Help

File Ei
LAEE B &0

L

) 7N
DD 1 220 7u
rser=1m rser=2.5m
pwm_pulse =I(L1) =2

(L)

|

\

V(vout)

|
|
|
|

QSPICE

TI C2000 MCU family.

*In this design, PWM generation

For this implementation, the PWM generation, sampling timing, and control algorithm are
all implemented in C-block. While for a more basic implementation the PWM generation
and sampling timing can be designed using an actual triangle wave within C-block, in this
implementation we skipped the triangle waveform and directly compute the future
discontinuity event.

Benefit of this approach is reduced number of timestep iteration especially around the
discontinuity.

Disadvantage is a small added complexity of computing the and implementing the future
discontinuity event algorithm.

method follow the method used by

The three levels of complexity

Level 3 : C-block for control and PWM with deadtime

Sptons mthod=trp B oo The level 3 implementation extends the details of the implementation on level 2 further by
e e) . implementing dead-time algorithm.
.model DD D Ron=1m Roff=10E6 Vfwd=2 eﬁm outl—outl
outZ—out2
D1
SWH | DD
P
o e Lo o
“tewL | oo EJ?C1 2204 I‘/’u
rser=1m rser=2.5m
=I(L1) m=2
. PULSE0 1 10m 0 0 10m 20m
Runtime = 1.598s
‘@ QonoaspicE™ Buckaaw o x

File Edit View Help

DEE » a8 8@

|
E I} """""""""""""""""""""""""""""""""""""
|

*In this design, PWM generation method follow the method used by
TI C2000 MCU family.

Level 2 PWM Level 1 PWM

Level 3 PWM

PWM signal comparison (discontinuity event capture)

asece

The key for simulation speed improvement is by simply
reducing the effort for Qspice timing solver to accurately
capture the exact discontinuity event timestamp.

Level 2 PWM clearly have significantly less simulation
points than Level 1 PWM.

While the Level 3 clearly has more time stamp than Level
2 due to the deadtime generation, however the
generated timestamp is still less than Level 1 PWM. Thus
the shorter time to complete the simulation.

Summary

1.The high simulation accuracy and timing accuracy can be achieved by using the Trunc()
feature.

2.For the same simulation condition (without deadtime), the timing algorithm can reduce
the simulation time down by 58%. Even with deadtime (highest accuracy) the simulation
time is 32% faster than using the Qspice discontinuity detection.

3.Another benefit of the timing control approach is more accurate overall simulation as
indicated by no simulation artifact to be visible on the output voltage and inductor current
waveforms.

