
Three Complexity Levels of 
PWM Implementation for Digital 

Controller Simulation

By: Arief Noor Rahman



Background
• Qspice has great improvement over its predecessor (LTspice). My favorite

feature is the added support for custom digital block (C and Verilog). Which
allows more efficient and more direct implementation of various control,
analysis, and signal processing algorithm (instead of using circuit/behavioral
source or as post processing).

• This article provides a method on how to use C-block to achieve digital smps
simulation as fast and as accurate as possible.

• Some background information about the C-block implementation as well as
my own understanding of the interaction between main Spice solver with the
C-block are provided.



Structure of C-block for Qspice

useful to print some statements on the 
Qspice console. But remember to not 
overuse it, because it use msleep(30) to 
wait so that the Qspice can fetch the print 
out statements. However, it also slows 
down the sim each time display() is 
called.

this union defined all the data types used 
for the input/output for the C-block. we 
can leave it as is.

this is something to do with how windows 
load the .dll and allow the code to be 
called. we can leave it as is.

upon call bzero(), it reset all the value in 
the struct sBUCK_X1 to zero

user can define most of all data in struct 
sBUCK_X1. the data defined in sBUCK_X1 
will be maintained by Qspice throughout 
all the simulation, even when negative 
timestep is applied.

main function for all the algorithm 
implementation.
*note: things in if(!opaque){} will be 
executed once at the beginning of the 
simulation. users can put some 
calculation there that just need to run 
once.

Qspice will call this function to determine 
the maximum allowable time step. Qspice 
takes into account all suggestion from all 
components in the simulation

Qspice calls this function to read if there 
is any suggestion for the next timestep. 
Qspice take into account all suggestion 
from all components in the simulation.

This function only called once upon the 
termination of the simulation.



Tricky Parts about C-block and Timing within Qspice
1. Qspice use variable timestep, furthermore upon nonlinearity event detection (i.e. transistor switching, or diode on DCM), Qspice can

even apply negative timestep to ensure the exact timing of the non-linear event is properly captured.

This behavior can mess up with C-block as most control/signal processing algorithm are not designed with negative timestep. Where it
can cause the user’s algorithm to be called multitle time for the same simulation run time. To avoid this, ensure that the variables that is
sensitive to simulation runtime must be defined within the struct sBuck_X1

2. Trunc() is used to provide suggestion of next timestep. The primary suggestion from the template is based on the working principle of
Qspice own’s variable timestep algorithm, where if the result of the next timestep induces a nonlinearity then revert back to the
minimum timestep. After trying with minimum timestep for a few steps, then next timestep is double of the current timestep. The
timestep will keep increasing until max timestep is reach or nonlinearity event is detected.

To speed up the simulation, in case of digital control smps, we can exploit the characteristic of the digital pwm implementation where
the duty cycle for the of the future switching period is defined by the last sampling period. Means we can set send the Qspice solver the
next timestep suggestion to directly hit the next transistor switching time.

*note: Qspice takes in the smallest maxtimestep and smallest timestep suggestion from all components in the simulation schematic



Timing Control Implementation Algorithm



The three levels of complexity

Level 1 : C-block only for control algorithm
In this approach, C-block only performs the control algorithm that read analog feedback
and send out duty cycle command. Sampling timing control for C-block is provided by the
clk (V3) and the pwm pulse output is provided by carrier (V2) and comparator (B2).

Note 1: Model definition for SWH and SWL have parameter ttol=1n to force Qspice to
iterate around the exact switching event with the accuracy down to 1ns. Additionally,
Qspice also conduct some iteration around the peak and valley of the carrier triangle
waveform and at the rise/fall time of clk source.

Note 2: Simulation exhibit some strange unrealistic oscillation, thus the solver changed to
gear which have oscillation damping behavior. The oscillation still occurs in the simulation.

Note 3: This method is the simplest, however the multiple timestep iteration around the
discontinuity event can increase the total simulation time, especially for complex simulation
with higher number of switches.

Runtime = 2.338s



The three levels of complexity

Level 2 : C-block for control and basic pwm generation
For this implementation, the PWM generation, sampling timing, and control algorithm are
all implemented in C-block. While for a more basic implementation the PWM generation
and sampling timing can be designed using an actual triangle wave within C-block, in this
implementation we skipped the triangle waveform and directly compute the future
discontinuity event.

Benefit of this approach is reduced number of timestep iteration especially around the
discontinuity.

Disadvantage is a small added complexity of computing the and implementing the future
discontinuity event algorithm.

*In this design, PWM generation method follow the method used by
TI C2000 MCU family.

Runtime = 0.985s



The three levels of complexity

Level 3 : C-block for control and PWM with deadtime
The level 3 implementation extends the details of the implementation on level 2 further by
implementing dead-time algorithm.

Runtime = 1.598s

*In this design, PWM generation method follow the method used by
TI C2000 MCU family.



PWM signal comparison (discontinuity event capture)

The key for simulation speed improvement is by simply 
reducing the effort for Qspice timing solver to accurately 
capture the exact discontinuity event timestamp.

Level 2 PWM clearly have significantly less simulation 
points than Level 1 PWM.

While the Level 3 clearly has more time stamp than Level 
2 due to the deadtime generation, however the 
generated timestamp is still less than Level 1 PWM. Thus 
the shorter time to complete the simulation.

Le
ve

l 1
 P

W
M

Le
ve

l 2
 P

W
M

Le
ve

l 3
 P

W
M



Summary
1.The high simulation accuracy and timing accuracy can be achieved by using the Trunc()

feature.

2.For the same simulation condition (without deadtime), the timing algorithm can reduce
the simulation time down by 58%. Even with deadtime (highest accuracy) the simulation
time is 32% faster than using the Qspice discontinuity detection.

3.Another benefit of the timing control approach is more accurate overall simulation as
indicated by no simulation artifact to be visible on the output voltage and inductor current
waveforms.


