

© DecaWave 2015 This document is confidential and contains information that is proprietary to
DecaWave Limited. No reproduction is permitted without prior express written permission of the
author

 APS019 APPLICATION NOTE

ISSUES TO CONSIDER WHEN
PORTING THE DECAWAVE
DECARANGING SOURCE
CODE TO AN 8-BIT MCU

Version 1.1

This document is subject to change without
notice

APS019: Issues to consider when porting the DecaWave
DecaRanging source code to an 8-bit MCU

© DecaWave 2015 This document is confidential and contains information that is proprietary to
DecaWave Limited. No reproduction is permitted without prior express written permission of the
author

 Page 2 of 10

Table of Contents

LIST OF FIGURES ... 2

LIST OF TABLES .. 2

1 INTRODUCTION ... 3

2 ASPECTS OF PORTING THE CODE ... 4

2.1 INTRODUCTION .. 4
2.2 CONSIDERATION OF LITTLE-ENDIAN AND BIG-ENDIAN MEMORY ARCHITECTURES .. 4

2.2.1 Determining which memory architecture is used ... 4
2.2.2 Networking concerns .. 4

2.3 COMPILER DIFFERENCES... 5
2.3.1 Introduction .. 5
2.3.2 Pointer types ... 5
2.3.3 Variable truncation and optimization ... 5

2.4 SOFTWARE ARCHITECTURE & HARDWARE PLATFORM ABSTRACTION LAYER .. 6
2.4.1 Overview ... 6
2.4.2 Clocking ... 6
2.4.3 SPI interface .. 6
2.4.4 External IRQ handling ... 8
2.4.5 Mutex mechanism .. 8

3 CONCLUSION ... 9

4 REFERENCES .. 10

5 DOCUMENT HISTORY .. 10

6 MAJOR CHANGES .. 10

7 FURTHER INFORMATION ... 10

LIST OF FIGURES

FIGURE 1: 18 MHZ SPI TRANSACTION USING CORTEX M3 WITHOUT DMA ... 7
FIGURE 2: 18MHZ SPI TRANSACTION USING CORTEX M3 WITH DMA .. 7
FIGURE 3: 12MHZ SPI TRANSACTION ON C8051 WITH NO DMA & NO IRQ ... 8

LIST OF TABLES

TABLE 1: TABLE OF REFERENCES .. 10
TABLE 2: DOCUMENT HISTORY ... 10

APS019: Issues to consider when porting the DecaWave
DecaRanging source code to an 8-bit MCU

© DecaWave 2015 This document is confidential and contains information that is proprietary to
DecaWave Limited. No reproduction is permitted without prior express written permission of the
author

 Page 3 of 10

1 INTRODUCTION

DecaWave's DW1000 is a single chip UWB transceiver, enabling the development of highly accurate,
cost effective location solutions.

As part of customer development and evaluation support DecaWave supplies an evaluation kit,
EVK1000, and provides example two-way ranging application (DecaRanging) software source code.
The EVK1000 uses an ARM Cortex M3 based microcontroller (STM32F105RCT6) which is a 32-bit,
little-endian machine

Customers may wish to use a different microcontroller to that used in the EVK1000, e.g. an 8-bit
device, in their own design. This document outlines the areas to be considered by the developer when
porting the DecaRanging application software to an 8-bit microcontroller.

This document should be read in conjunction with APS013 “DW1000 and two way ranging” which
describes the two-way ranging technique and gives an overview of the DecaRanging application.

APS019: Issues to consider when porting the DecaWave
DecaRanging source code to an 8-bit MCU

© DecaWave 2015 This document is confidential and contains information that is proprietary to
DecaWave Limited. No reproduction is permitted without prior express written permission of the
author

 Page 4 of 10

2 ASPECTS OF PORTING THE CODE

2.1 Introduction

Before starting to port to the desired microprocessor the developer should bear in mind some key
characteristics of the chosen microprocessor. These include: -

 whether the machine is little-endian or big-endian

 whether it is an 8, 16 or 32 bit machine

 the memory architectures which may vary and affect the storage of different types of
variables.

2.2 Consideration of little-endian and big-endian memory architectures

2.2.1 Determining which memory architecture is used

8-bit storage is used in DecaWave’s example code to ensure portability of the code to other memory
architectures. As already stated the MCU in the EVK1000 is a 32-bit, little-endian machine.

The example test code below prints out a message identifying the differences between little-endian
and big-endian memory storage.

void test_endian(void)

{

union e {

unsigned long int var;

unsigned char array[4];

};

e.array[0] = 0x0D;

e.array[1] = 0x0C

e.array[2] = 0x0B;

e.array[3] = 0x0A;

if (e.var == 0x0A0B0C0D)

{

 printf(“Little-endian\n\r”);

}

else if (e.var == 0x0D0C0B0A)

{

 printf(“Big-endian\n\r”);

}

else

{

printf(“Middle-endian or unknown storage type. Variable= %x”, e.var);

}

}

In this example, in the case of little-endian architecture the variable var will be 0x0A0B0C0D, while for

big-endian the variable var will be 0x0D0C0B0A.

2.2.2 Networking concerns

Since it is desirable for the same C code to work on different MCU types which can then interwork,
care needs to be taken with the communication channel byte order (i.e. the order of the bytes sent
over the air needs to be the same in all of the architectures).

In any system where MCUs with different architectures must be used together and where different
payloads are sent and received e.g. 32-bit values of timestamps and calculated differences between
timestamps then it is important that all nodes in the system process information in the same way, so
that at the application level the order of bytes is the same.

APS019: Issues to consider when porting the DecaWave
DecaRanging source code to an 8-bit MCU

© DecaWave 2015 This document is confidential and contains information that is proprietary to
DecaWave Limited. No reproduction is permitted without prior express written permission of the
author

 Page 5 of 10

A common method is to write specific transform functions to change from one endian type to the
other when sending and receiving data. These transforms are generally denoted as follows: -

 For sending data from the host to the network: -

htnol(): host-to-network-long transform function for 32-bit values

htons(): host-to-network-short transform function for 16-bit values

 For receiving data from the network to the host: -

ntohl(): network-to-host-long transform function for 32-bit values

ntohs(): network-to-host-short transform function for 16-bit values

Another way is to avoid the use of 16-bit or 32-bit values directly in communication buffers and always
use unsigned char arrays for network data payload sending / receiving.

In all 802.15.4 communications including the DecaRanging application, data transferred in the
payload always starts with the least significant bit first in time order.

2.3 Compiler differences

2.3.1 Introduction

In porting the code, consideration needs to be given to potential differences between compilers.

The EVK1000 DecaRanging code is compiled using the gcc compiler for ARM Cortex M3. Other

MCUs will require the use of different compilers e.g. for the C8051 MCU one possible compiler is the

C51 compiler from Keil.

2.3.2 Pointer types

The C51 compiler uses different pointer types for code and data memory storage access. Without

special keywords present in function prototypes, the C51 compiler assumes that pointers are for data

memory. Where it is intended to point to code rather than data, e.g. a function pointer, it is necessary
to add the keyword “code” to instruct the compiler that a pointer is to be treated as a “function pointer”

pointing to code memory. Please refer to the C51 compiler datasheet for additional information if

necessary:

 http://www.keil.com/support/man/docs/c51/c51_le_ptrconversions.htm

2.3.3 Variable truncation and optimization

If the MCU has an 8-bit core, the compiler may also truncate (optimize) variables when performing
operations, especially when performing shift operations. To prevent this, the developer needs to add
C-casting operations to ensure the compiler operates as intended. An example of incorrect (non-
portable) and correct (portable) implementations of a shift operation is shown below -

unsigned char abc;

unsigned long int def;

abc = 0x01;

// incorrect implementation: in the line below we expect

def=0x01000000, but for C51 it will be zero

def = abc<<24;

// correct implementation: in next line result will be as expected,

http://www.keil.com/support/man/docs/c51/c51_le_ptrconversions.htm

APS019: Issues to consider when porting the DecaWave
DecaRanging source code to an 8-bit MCU

© DecaWave 2015 This document is confidential and contains information that is proprietary to
DecaWave Limited. No reproduction is permitted without prior express written permission of the
author

 Page 6 of 10

0x01000000

def = ((unsigned long int)abc)<<24;

2.4 Software Architecture & Hardware platform abstraction layer

2.4.1 Overview

The source code of the DecaRanging application, as provided by DecaWave, consists of three layers:

1) Application layer [APPLICATION]
2) Platform independent driver layer [DECADRIVER]
3) Platform dependent driver layer [PLATFORM]

The APPLICATION layer and DECADRIVER layer software are described in references [3] and [4]
respectively. Please refer to these documents for more details.

The PLATFORM layer provides the software interface from the APPLICATION and DECADRIVER layers to
the target specific hardware. When porting, the developer must ensure that the PLATFORM layer
works correctly so that the application operates as expected.

The most important elements of the PLATFORM layer are as follows: -

 Clocking functionality

 SPI interface handling

 Interrupt handling

 Mutex mechanism

2.4.2 Clocking

For the DecaRanging application the clocking functionality must provide a “Sleeping” function, i.e.
pausing functionality with CLOCK_PER_SEC resolution. This is the sleep_ms function in
deca_sleep.c.

For the gcc compiler this functionality is provided through “time.h” libraries and in respect of

hardware through re-entrant functions declared in “syscalls.h”.

For example, in the case of the C51 compiler, the developer needs to create a hardware dependent
clock system, which consists of the necessary clock functions, for example: -

 oscillator HW initialisation function

 system timer initialisation and its call-back function

 sleep() function

2.4.3 SPI interface

The DW1000 transceiver is controlled through its slave SPI interface by the external microcontroller.
This slave SPI interface has a maximum SPI clock rate of 20 MHz.

The developer must implement specific code for its hardware. For SPI interface, it includes writetospi
and readfromspi functions from deca_spi.c, spi_set_rate_low and spi_set_rate_high from port.c.
The SPI initialisation can be handled by the spi_peripheral_init function in port.c, or in a custom
function created by the developer.

In battery powered applications, power consumption is one of the main design concerns, thus it is
desirable to have the SPI rate as fast as possible. This minimizes the amount of time taken per SPI
transaction thereby minimizing the power consumption associated with the transfer.

APS019: Issues to consider when porting the DecaWave
DecaRanging source code to an 8-bit MCU

© DecaWave 2015 This document is confidential and contains information that is proprietary to
DecaWave Limited. No reproduction is permitted without prior express written permission of the
author

 Page 7 of 10

Some SPI implementations have an inter-byte spacing between each of the transferred bytes in a
transaction, as shown in Figure 1. Minimizing this inter-byte spacing ensures that the resultant SPI
transfer rate is as close as possible to the SPI clock rate (e.g. 20 MHz). This has a bearing on the
choice of MCU that is suitable for particular application. Using DMA for large SPI transfers will also
help this, as shown in Figure 2.

Figure 1: 18 MHz SPI transaction using Cortex M3 without DMA

Figure 1 shows an 11-byte SPI transaction using the Cortex M3 without DMA support resulting in
inter-byte spacing in the transaction. In this example, for an SPI clock of 18 MHz, the effective data
rate is approximately 9 Mbit/s.

Figure 2: 18MHz SPI transaction using Cortex M3 with DMA

Figure 2 shows an 11-byte SPI transaction using the Cortex M3 with DMA support. There is no inter-
byte spacing so with an SPI clock of 18 MHz the effective data rate is approximately 16 Mbit/s.

APS019: Issues to consider when porting the DecaWave
DecaRanging source code to an 8-bit MCU

© DecaWave 2015 This document is confidential and contains information that is proprietary to
DecaWave Limited. No reproduction is permitted without prior express written permission of the
author

 Page 8 of 10

Figure 3: 12MHz SPI transaction on C8051 with no DMA & no IRQ

Figure 3 shows an 11-byte SPI transaction using the C8051F381 with an SPI clock of 12 MHz, with
no DMA support and no IRQ. The effective data rate is approximately 1.6 Mbit/s. Here the inter-byte
spacing in the transaction reduces the effective data rate of the SPI interface from a possible 12
Mbit/s by a factor of almost ten times. Depending on the intended application this may be an issue,
which may mean that the particular 8-bit MCU is not suitable.

2.4.4 External IRQ handling

DW1000 uses its interrupt request (IRQ) pin to indicate to the MCU, and thus the APPLICATION, that
some event has occurred. Using interrupts is a well-known method for rapidly and efficiently
processing events.

The default active level of the DW1000 IRQ output is high, so when the DW1000 has no events, it will
drive its IRQ pin low. If the MCU puts the DW1000 into DEEP SLEEP mode, the DW1000 will release
its IRQ pin allowing it to float. This may cause unnecessary MCU interrupts. To avoid this it is highly
recommended to use an external pull-down resistor connected to the MCU IRQ pin. See [2].

2.4.5 Mutex mechanism

When porting the DecaRanging application to another MCU, it is important to protect the handling of
interrupts from DW1000 IRQ line to prevent concurrent access to the MCU SPI peripheral block by
different independent sources (i.e. threads, IRQ, etc.).

Example mutex functions are included in the DecaRanging source code; the developer will need to

port these to their own implementation / system in deca_mutex.c.

APS019: Issues to consider when porting the DecaWave
DecaRanging source code to an 8-bit MCU

© DecaWave 2015 This document is confidential and contains information that is proprietary to
DecaWave Limited. No reproduction is permitted without prior express written permission of the
author

 Page 9 of 10

3 CONCLUSION

This application note describes the main areas a developer needs to consider when porting
DecaWave’s example DecaRanging source code to a microprocessor of their choice.

Through the careful design and porting of PLATFORM layer functions, the example application can be
easily ported to various microcontrollers with minimum debug.

APS019: Issues to consider when porting the DecaWave
DecaRanging source code to an 8-bit MCU

© DecaWave 2015 This document is confidential and contains information that is proprietary to
DecaWave Limited. No reproduction is permitted without prior express written permission of the
author

 Page 10 of 10

4 REFERENCES

Reference is made to the following documents in the course of this application note: -

Table 1: Table of References

Ref Author Version Title

[1] DecaWave Current DW1000 Data Sheet

[2] DecaWave Current DW1000 User Manual

[3] DecaWave Current DecaWave API Guide

[4] DecaWave Current APS013 DW1000 and two-way ranging

5 DOCUMENT HISTORY

Table 2: Document History

Revision Date Description

1.0 30th June 2015 Initial release

1.1 31-August-2018 New logo update

6 MAJOR CHANGES

v1.0

Page Change Description

All Initial release

v1.1

Page Change Description

All Logo update

6 Updated SPI section with additional implementations required

7 FURTHER INFORMATION

Decawave develops semiconductors solutions, software, modules, reference designs - that
enable real-time, ultra-accurate, ultra-reliable local area micro-location services.
Decawave’s technology enables an entirely new class of easy to implement, highly secure,
intelligent location functionality and services for IoT and smart consumer products and
applications.

For further information on this or any other Decawave product, please refer to our website
www.decawave.com.

http://www.decawave.com/

	List of Figures
	List of Tables
	1 Introduction
	2 Aspects of porting the code
	2.1 Introduction
	2.2 Consideration of little-endian and big-endian memory architectures
	2.2.1 Determining which memory architecture is used
	2.2.2 Networking concerns

	2.3 Compiler differences
	2.3.1 Introduction
	2.3.2 Pointer types
	2.3.3 Variable truncation and optimization

	2.4 Software Architecture & Hardware platform abstraction layer
	2.4.1 Overview
	2.4.2 Clocking
	2.4.3 SPI interface
	2.4.4 External IRQ handling
	2.4.5 Mutex mechanism

	3 Conclusion
	4 References
	5 Document History
	6 Major Changes
	7 FURTHER INFORMATION

